Marija RadmilovićRadjenović

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1883930/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Analysis of Microwave Ablation Parameters for Treatment of Liver Tumors from the 3D-IRCADb-01 Database. Biomedicines, 2022, 10, 1569.	1.4	4
2	Studies of enhanced field emission relevant to high field superconducting radio frequency devices. Nuclear Technology and Radiation Protection, 2021, 36, 18-24.	0.3	3
3	Controllable arrangement of integrated obstacles in silicon microchannels etched in 25 wt.% TMAX. Hemijska Industrija, 2021, 75, 15-24.	0.3	0
4	Transport Characteristics of the Electrification and Lightning of the Gas Mixture Representing the Atmospheres of the Solar System Planets. Atmosphere, 2021, 12, 438.	1.0	2
5	Application of multi-component fluid model in studies of the origin of skin burns during electrosurgical procedures. Computer Methods in Biomechanics and Biomedical Engineering, 2021, 24, 1-10.	0.9	0
6	The Effect of the Design of Surgical Electrodes on the Formation of Sparking Enhanced Burns. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2021, 4, .	0.3	0
7	Transport Parameters and Breakdown Voltage Characteristics of Gas Mixture Representing Martian Atmosphere and Its Constituents. Acta Physica Polonica A, 2021, 139, 698-703.	0.2	0
8	Finite Element Analysis of the Microwave Ablation Method for Enhanced Lung Cancer Treatment. Cancers, 2021, 13, 3500.	1.7	19
9	Finite element analysis of the effect of microwave ablation on the liver, lung, kidney, and bone malignant tissues. Europhysics Letters, 2021, 136, 28001.	0.7	5
10	On Efficacy of Microwave Ablation in the Thermal Treatment of an Early-Stage Hepatocellular Carcinoma. Cancers, 2021, 13, 5784.	1.7	17
11	Etching of Uncompensated Convex Corners with Sides along <n10> and <100> in 25 wt% TMAH at 80 ŰC. Micromachines, 2020, 11, 253.</n10>	1.4	5
12	Simulation study of direct current vacuum breakdown and its application to high-gradient accelerating structures. Nuclear Technology and Radiation Protection, 2020, 35, 30-35.	0.3	4
13	Evolution of Si Crystallographic Planes-Etching of Square and Circle Patterns in 25 wt % TMAH. Micromachines, 2019, 10, 102.	1.4	9
14	Study of the Effect of the Field Emission on the Breakdown Voltage Characteristic of Direct Current Nitrogen Microdischarges. Acta Physica Polonica A, 2019, 136, 114-117.	0.2	0
15	Eigenmode and frequency domain analysis of the third-order microring filters. Optical and Quantum Electronics, 2018, 50, 1.	1.5	3
16	Monte Carlo modeling of radio-frequency breakdown in argon. Plasma Sources Science and Technology, 2018, 27, 075013.	1.3	20
17	The effect of the enhanced field emission on the characteristics of the superconducting radio frequency cavities. Nuclear Technology and Radiation Protection, 2018, 33, 341-346.	0.3	0
18	Fundamental Properties of the High Pressure Hydrogen Microdischarges in Static and Time-Varying Electric Fields. IEEE Transactions on Plasma Science, 2017, 45, 913-917.	0.6	0

#	Article	IF	CITATIONS
19	The breakdown voltage characteristics of compressed ambient air microdischarges from direct current to 10.2 MHz. Plasma Sources Science and Technology, 2017, 26, 055023.	1.3	9
20	Eigenmodes of finite length silicon-on-insulator microring resonator arrays. Optical and Quantum Electronics, 2017, 49, 1.	1.5	7
21	Study of multipactor effect with applications to superconductive radiofrequency cavities. Nuclear Technology and Radiation Protection, 2017, 32, 115-119.	0.3	Ο
22	Microwave Field Strength Computing for the Resonator Designs and Filters. Acta Physica Polonica A, 2016, 129, 289-292.	0.2	1
23	Field emission driven direct current argon discharges and electrical breakdown mechanism across micron scale gaps. European Physical Journal D, 2015, 69, 1.	0.6	6
24	Simulation and experimental study of maskless convex corner compensation in TMAH water solution. Journal of Micromechanics and Microengineering, 2014, 24, 115003.	1.5	7
25	The effect of plasma etching on the surface topography of niobium superconducting radio frequency cavities. Electronic Materials Letters, 2014, 10, 1039-1043.	1.0	0
26	Measurements of the volt-ampere characteristics and the breakdown voltages of direct-current helium and hydrogen discharges in microgaps. Physics of Plasmas, 2014, 21, 103503.	0.7	8
27	Computerâ€aided design and simulation of optical microring resonators. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2014, 27, 259-267.	1.2	5
28	The Breakdown Phenomena in Micrometer Scale Direct-Current Gas Discharges. Plasma Chemistry and Plasma Processing, 2014, 34, 55-64.	1.1	40
29	Gas breakdown and secondary electron yields. European Physical Journal D, 2014, 68, 1.	0.6	45
30	Excitation of Confined Modes in Silicon Slotted Waveguides and Microring Resonators for Sensing Purposes. IEEE Sensors Journal, 2014, 14, 1412-1417.	2.4	8
31	Three-dimensional simulations of the surface topography evolution of niobium superconducting radio frequency cavities. Nuclear Technology and Radiation Protection, 2014, 29, 97-101.	0.3	0
32	Field-emission–driven direct current hydrogen discharges in microgaps. Europhysics Letters, 2013, 103, 45002.	0.7	9
33	The Role of the Field Emission Effect in the Breakdown Mechanism of Direct urrent Helium Discharges in Micrometer Gaps. Contributions To Plasma Physics, 2013, 53, 573-579.	0.5	10
34	The role of the field emission effect in direct-current argon discharges for the gaps ranging from 1 to 100ÂÂμm. Journal Physics D: Applied Physics, 2013, 46, 015302.	1.3	47
35	Three-Dimensional Simulations with Fields and Particles in Software and Inflector Designs. Journal of Software Engineering and Applications, 2013, 06, 390-395.	0.8	2
36	An approach to the three-dimensional simulations of the Bosch process. Journal of Materials Research, 2012, 27, 793-798.	1.2	6

#	Article	IF	CITATIONS
37	THE BREAKDOWN VOLTAGE CURVES IN DIRECT CURRENT MICRODISCHARGES IN MOLECULAR GASES. Modern Physics Letters B, 2012, 26, 1250122.	1.0	3
38	The effects of isotropic etching on roughening and smoothing of nanostructure. Electronic Materials Letters, 2012, 8, 491-494.	1.0	4
39	The effect of different etching modes on the smoothing of the rough surfaces. Materials Letters, 2012, 86, 165-167.	1.3	4
40	The breakdown voltage characteristics, the effective secondary emission coefficient and the ionization coefficient of the argon-based mixtures. Nuclear Instruments & Methods in Physics Research B, 2012, 279, 100-102.	0.6	3
41	Transport parameters and breakdown voltage characteristics of the dry air and its constituents. Nuclear Instruments & Methods in Physics Research B, 2012, 279, 96-99.	0.6	8
42	The breakdown voltage characteristics and the secondary electron production in direct current hydrogen discharges for the gaps ranging from 1 μm to 100 μm. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 1048-1052.	0.9	22
43	Characteristics of the 2nd Harmonic ECR Micro Plasma Sources by Using PIC/MCC Simulations. Acta Physica Polonica A, 2012, 122, 128-131.	0.2	0
44	Experimental and theoretical studies of the breakdown voltage characteristics at micrometre separations in air. Europhysics Letters, 2011, 95, 35002.	0.7	38
45	On Explanation of the Double-Valued Paschen-Like Curve for RF Breakdown in Argon. IEEE Transactions on Plasma Science, 2011, 39, 2556-2557.	0.6	19
46	Top down nano technologies in surface modification of materials. Open Physics, 2011, 9, 265-275.	0.8	20
47	The surface charging effects in threeâ€dimensional simulation of the profiles of plasmaâ€etched nanostructures. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2011, 24, 535-544.	1.2	4
48	Experimental and theoretical studies of the direct-current breakdown voltage in argon at micrometer separations. Physica Scripta, 2011, 83, 045503.	1.2	34
49	Theoretical Studies of the Breakdown Characteristics at Microwave Frequencies. Spectroscopy Letters, 2011, 44, 146-150.	0.5	5
50	A Simulation Framework for the Ion Transport in Spiral Inflectors. IEEE Transactions on Plasma Science, 2011, 39, 2612-2613.	0.6	0
51	Three-Dimensional Simulations of the Anisotropic Etching Profile Evolution for Producing Nanoscale Devices. Acta Physica Polonica A, 2011, 119, 447-450.	0.2	5
52	Influence of the secondary electron emission on the characteristics of radio frequency plasmas. Hemijska Industrija, 2011, 65, 1-8.	0.3	0
53	Transport Coefficients For Electrons in Mixtures CF4/Ar/O2and CF, CF2or CF3Radicals. Acta Physica Polonica A, 2011, 120, 289-291.	0.2	0
54	On Application of Plasmas in Nanotechnologies. Nanostructure Science and Technology, 2010, , 85-130.	0.1	5

#	Article	IF	CITATIONS
55	Level Set Approach to Anisotropic Wet Etching of Silicon. Sensors, 2010, 10, 4950-4967.	2.1	33
56	Calculations of Cross Sections Data for Scattering of Electrons on HBr. Acta Physica Polonica A, 2010, 117, 745-747.	0.2	1
57	Breakdown Phenomena in Water Vapor Microdischarges. Acta Physica Polonica A, 2010, 117, 752-755.	0.2	1
58	Level set simulations of the anisotropic wet etching process for device fabrication in nanotechnologies. Hemijska Industrija, 2010, 64, 93-97.	0.3	5
59	Gas discharges modeling by Monte Carlo technique. Hemijska Industrija, 2010, 64, 171-175.	0.3	0
60	Application of level set method in simulation of surface roughness in nanotechnologies. Thin Solid Films, 2009, 517, 3954-3957.	0.8	10
61	3D simulations of the profile evolution during anisotropic wet etching of silicon. Thin Solid Films, 2009, 517, 4233-4237.	0.8	19
62	Influence of the surface conditions on rf plasma characteristics. European Physical Journal D, 2009, 54, 445-449.	0.6	20
63	Modeling of discharges in a capacitively coupled dual frequency plasma reactor. Hemijska Industrija, 2009, 63, 233-238.	0.3	2
64	Application of the level set method on the non-convex Hamiltonians. Facta Universitatis - Series Physics Chemistry and Technology, 2009, 7, 33-44.	0.2	1
65	Modeling of a breakdown voltage in microdischarges. Hemijska Industrija, 2009, 63, 293-299.	0.3	0
66	Theoretical study of the electron field emission phenomena in the generation of a micrometer scale discharge. Plasma Sources Science and Technology, 2008, 17, 024005.	1.3	62
67	An analytical relation describing the dramatic reduction of the breakdown voltage for the microgap devices. Europhysics Letters, 2008, 83, 25001.	0.7	48
68	Particle-In-Cell Modelling of a Neutral Beam Source for Material Processing in Nanoscale Structures Fabrication. Materials Science Forum, 2007, 555, 47-52.	0.3	0
69	Influence of Charging on SiO ₂ Etching Profile Evolution Etched by Fluorocarbon Plasmas. Materials Science Forum, 2007, 555, 53-58.	0.3	5
70	3D Etching profile evolution simulations: Time dependence analysis of the profile charging during SiO ₂ etching in plasma. Journal of Physics: Conference Series, 2007, 86, 012017.	0.3	8
71	The influence of ion-enhanced field emission on the high-frequency breakdown in microgaps. Plasma Sources Science and Technology, 2007, 16, 337-340.	1.3	50
72	A Particle-in-Cell Simulation of the High-Field Effect in Devices With Micrometer Gaps. IEEE Transactions on Plasma Science, 2007, 35, 1223-1228.	0.6	33

#	Article	IF	CITATIONS
73	Modelling of breakdown behavior by PIC/MCC code with improved secondary emission models. Journal of Physics: Conference Series, 2007, 71, 012007.	0.3	9
74	A Particle-in-Cell Simulation of the Breakdown Mechanism in Microdischarges with an Improved Secondary Emission Model. Contributions To Plasma Physics, 2007, 47, 165-172.	0.5	26
75	Nonconvex Hamiltonians in three dimensional level set simulations of the wet etching of silicon. Applied Physics Letters, 2006, 89, 213102.	1.5	28
76	Modelling of low-pressure gas breakdown in uniform DC electric field by PIC technique with realistic secondary electron emission. European Physical Journal D, 2006, 56, B996-B1001.	0.4	6
77	Sparse field level set method for non-convex Hamiltonians in 3D plasma etching profile simulations. Computer Physics Communications, 2006, 174, 127-132.	3.0	39
78	Modelling of a low-pressure argon breakdown in combined fields. Plasma Sources Science and Technology, 2006, 15, 1-7.	1.3	20
79	Modeling of a Plasma Etcher for Charging Free Processing of Nanoscale Structures. Materials Science Forum, 2006, 518, 57-62.	0.3	2
80	Neutralization of Ion Beams for Reduction of Charging Damage in Plasma Etching. Materials Science Forum, 2005, 494, 297-302.	0.3	9
81	Calculation of Escape Factors for Electrons in Neon and Helium. IEEE International Conference on Plasma Science, 2005, , .	0.0	0
82	Particle and fluid simulations of low-temperature plasma discharges: benchmarks and kinetic effects. Journal Physics D: Applied Physics, 2005, 38, R283-R301.	1.3	237
83	Particle-in-cell simulation of gas breakdown in microgaps. Journal Physics D: Applied Physics, 2005, 38, 950-954.	1.3	112
84	Data Bases for Modeling Plasma Devices for Processing of Integrated Circuits. Materials Science Forum, 2004, 453-454, 15-20.	0.3	3
85	The Role of Non-Equilibrium Plasmas and MicroDischarges in Top Down Nanotechnologies and Selforganized Assembly of Nanostructures. , 0, , .		3