
Ð'Ð,аÑ,Đ¾Ñ€ Đ¢Đ°Ñ€Đ°Đ±Ñ‹Đ°Đ,Đ¼

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1883857/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	TrkB-dependent EphrinA reverse signaling regulates callosal axon fasciculate growth downstream of Neurod2/6. Cerebral Cortex, 2023, 33, 1752-1767.	2.9	4
2	The murine ortholog of Kaufman oculocerebrofacial syndrome protein Ube3b regulates synapse number by ubiquitinating Ppp3cc. Molecular Psychiatry, 2021, 26, 1980-1995.	7.9	18
3	Protein Synthesis in the Developing Neocortex at Near-Atomic Resolution Reveals Ebp1-Mediated Neuronal Proteostasis at the 60S Tunnel Exit. Molecular Cell, 2021, 81, 304-322.e16.	9.7	27
4	Olig3 regulates early cerebellar development. ELife, 2021, 10, .	6.0	24
5	Ablation of Vti1a/1b Triggers Neural Progenitor Pool Depletion and Cortical Layer 5 Malformation in Late-embryonic Mouse Cortex. Neuroscience, 2021, 463, 303-316.	2.3	5
6	The Role of Neurod Genes in Brain Development, Function, and Disease. Frontiers in Molecular Neuroscience, 2021, 14, 662774.	2.9	73
7	Adhesion dynamics in the neocortex determine the start of migration and the post-migratory orientation of neurons. Science Advances, 2021, 7, .	10.3	2
8	Split chloramphenicol acetyl-transferase assay reveals self-ubiquitylation-dependent regulation of UBE3B. Journal of Molecular Biology, 2021, 433, 167276.	4.2	3
9	OUP accepted manuscript. Human Molecular Genetics, 2021, 30, 2068-2081.	2.9	7
10	SNAP to attention: A SNARE complex regulates neuronal progenitor polarity. Journal of Cell Biology, 2021, 220, .	5.2	0
11	Molecular Evolution, Neurodevelopmental Roles and Clinical Significance of HECT-Type UBE3 E3 Ubiquitin Ligases. Cells, 2020, 9, 2455.	4.1	9
12	Human endogenous retrovirus HERV-K(HML-2) RNA causes neurodegeneration through Toll-like receptors. JCI Insight, 2020, 5, .	5.0	68
13	Srsf10 and the minor spliceosome control tissue-specific and dynamic SR protein expression. ELife, 2020, 9, .	6.0	18
14	mTORC1 and mTORC2 Differentially Regulate Cell Fate Programs to Coordinate Osteoblastic Differentiation in Mesenchymal Stromal Cells. Scientific Reports, 2019, 9, 20071.	3.3	25
15	Role of Zeb2/Sip1 in neuronal development. Brain Research, 2019, 1705, 24-31.	2.2	39
16	Neonatal Hyperoxia Perturbs Neuronal Development in the Cerebellum. Molecular Neurobiology, 2018, 55, 3901-3915.	4.0	28
17	Polarity Acquisition in Cortical Neurons Is Driven by Synergistic Action of Sox9-Regulated Wwp1 and Wwp2 E3AUbiquitin Ligases and Intronic miR-140. Neuron, 2018, 100, 1097-1115.e15.	8.1	50
18	Activity― <scp>DEP</scp> endent Transposition. EMBO Reports, 2017, 18, 346-348.	4.5	5

Ð'Ð,Đ⁰Ñ,оÑ€ ТаÑ€Đ°Đ±Ñ

#	Article	IF	CITATIONS
19	Satb2 Cre/+ mouse as a tool to investigate cell fate determination in the developing neocortex. Journal of Neuroscience Methods, 2017, 291, 113-121.	2.5	5
20	Coordinately Co-opted Multiple Transposable Elements Constitute an Enhancer for wnt5a Expression in the Mammalian Secondary Palate. PLoS Genetics, 2016, 12, e1006380.	3.5	47
21	Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair. Nature Neuroscience, 2016, 19, 1050-1059.	14.8	123
22	Sip1 Downstream Effector ninein Controls Neocortical Axonal Growth, Ipsilateral Branching, and Microtubule Growth and Stability. Neuron, 2015, 85, 998-1012.	8.1	50
23	Bcl11a (Ctip1) Controls Migration of Cortical Projection Neurons through Regulation of Sema3c. Neuron, 2015, 87, 311-325.	8.1	90
24	miR-128 regulates neuronal migration, outgrowth and intrinsic excitability via the intellectual disability gene Phf6. ELife, 2015, 4, .	6.0	81
25	Unc5C and DCC act downstream of Ctip2 and Satb2 and contribute to corpus callosum formation. Nature Communications, 2014, 5, 3708.	12.8	66
26	Ntf3 acts downstream of Sip1 in cortical postmitotic neurons to control progenitor cell fate through feedback signaling. Development (Cambridge), 2014, 141, 3324-3330.	2.5	59
27	Neuronal Basic Helix–Loop–Helix Proteins Neurod2/6 Regulate Cortical Commissure Formation before Midline Interactions. Journal of Neuroscience, 2013, 33, 641-651.	3.6	78
28	Activation of EphA Receptors Mediates the Recruitment of the Adaptor Protein Slap, Contributing to the Downregulation of <i>N</i> -Methyl- <scp>d</scp> -Aspartate Receptors. Molecular and Cellular Biology, 2013, 33, 1442-1455.	2.3	11
29	Behavioural and functional characterization of Kv10.1 (Eag1) knockout mice. Human Molecular Genetics, 2013, 22, 2247-2262.	2.9	56
30	Protooncogene Ski cooperates with the chromatin-remodeling factor Satb2 in specifying callosal neurons. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3546-3551.	7.1	76
31	Neocortical dendritic complexity is controlled during development by NOMA-GAP-dependent inhibition of Cdc42 and activation of cofilin. Genes and Development, 2012, 26, 1743-1757.	5.9	47
32	Cellular retinaldehyde-binding protein (CRALBP) is a direct downstream target of transcription factor Pax6. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 151-156.	2.4	6
33	Postnatal subventricular zone of the neocortex contributes GFAP+ cells to the rostral migratory stream under the control of Sip1. Developmental Biology, 2012, 366, 341-356.	2.0	17
34	Prospero-related homeobox 1 gene (Prox1) is regulated by canonical Wnt signaling and has a stage-specific role in adult hippocampal neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5807-5812.	7.1	170
35	<i><scp>Satb2</scp></i> , modularity, and the evolvability of the vertebrate jaw. Evolution & Development, 2011, 13, 549-564.	2.0	61
36	<i>Pax6</i> regulates craniofacial form through its control of an essential cephalic ectodermal patterning center. Genesis, 2011, 49, 307-325.	1.6	24

Ð'Ð,Đ⁰Ñ,оÑ€ ТаÑ€Đ°Đ±Ñ

#	Article	IF	CITATIONS
37	FLRT2 and FLRT3 act as repulsive guidance cues for Unc5-positive neurons. EMBO Journal, 2011, 30, 2920-2933.	7.8	135
38	A Mammalian Conserved Element Derived from SINE Displays Enhancer Properties Recapitulating Satb2 Expression in Early-Born Callosal Projection Neurons. PLoS ONE, 2011, 6, e28497.	2.5	49
39	Molecular regulation of the developing commissural plate. Journal of Comparative Neurology, 2010, 518, 3645-3661.	1.6	56
40	Control of Postnatal Apoptosis in the Neocortex byRhoA-Subfamily GTPases Determines Neuronal Density. Journal of Neuroscience, 2010, 30, 4221-4231.	3.6	47
41	AP2Î ³ regulates basal progenitor fate in a region- and layer-specific manner in the developing cortex. Nature Neuroscience, 2009, 12, 1229-1237.	14.8	101
42	Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors. Nature Neuroscience, 2009, 12, 1373-1380.	14.8	193
43	SATB2 interacts with chromatinâ€remodeling molecules in differentiating cortical neurons. European Journal of Neuroscience, 2008, 27, 865-873.	2.6	120
44	Satb2 Is a Postmitotic Determinant for Upper-Layer Neuron Specification in the Neocortex. Neuron, 2008, 57, 378-392.	8.1	577
45	Smad-interacting protein-1 (Zfhx1b) acts upstream of Wnt signaling in the mouse hippocampus and controls its formation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12919-12924.	7.1	89
46	Satb2 Haploinsufficiency Phenocopies 2q32-q33 Deletions, whereas Loss Suggests a Fundamental Role in the Coordination of Jaw Development. American Journal of Human Genetics, 2006, 79, 668-678.	6.2	158
47	A novel mode of tangential migration of cortical projection neurons. Developmental Biology, 2006, 298, 299-311.	2.0	42
48	Comparative aspects of cerebral cortical development. European Journal of Neuroscience, 2006, 23, 921-934.	2.6	237
49	Molecular mechanisms of cortical differentiation. European Journal of Neuroscience, 2006, 23, 857-868.	2.6	124
50	Novel transcription factor <i>Satb2</i> interacts with matrix attachment region DNA elements in a tissueâ€specific manner and demonstrates cellâ€typeâ€dependent expression in the developing mouse CNS. European Journal of Neuroscience, 2005, 21, 658-668.	2.6	210
51	Primordial germ cell migration in the chick and mouse embryo: the role of the chemokine SDF-1/CXCL12. Developmental Biology, 2004, 272, 351-361.	2.0	191