
## Shaocheng Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1883764/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Longâ€term singleâ€column model intercomparison of diurnal cycle of precipitation over midlatitude and<br>tropical land. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 641-669.                            | 2.7  | 6         |
| 2  | Exploratory Precipitation Metrics: Spatiotemporal Characteristics, Process-Oriented, and Phenomena-Based. Journal of Climate, 2022, 35, 3659-3686.                                                                             | 3.2  | 11        |
| 3  | Better calibration of cloud parameterizations and subgrid effects increases the fidelity of the E3SM Atmosphere Model version 1. Geoscientific Model Development, 2022, 15, 2881-2916.                                         | 3.6  | 17        |
| 4  | Assessment of the sea surface temperature diurnal cycle in CNRM-CM6-1 based on its 1D coupled configuration. Geoscientific Model Development, 2022, 15, 3347-3370.                                                             | 3.6  | 1         |
| 5  | Effective radiative forcing of anthropogenic aerosols in E3SM version 1: historical changes, causality, decomposition, and parameterization sensitivities. Atmospheric Chemistry and Physics, 2022, 22, 9129-9160.             | 4.9  | 16        |
| 6  | Global Dust Cycle and Direct Radiative Effect in E3SM Version 1: Impact of Increasing Model<br>Resolution. Journal of Advances in Modeling Earth Systems, 2022, 14, .                                                          | 3.8  | 12        |
| 7  | Evaluating Diurnal and Semi-Diurnal Cycle of Precipitation in CMIP6 Models Using Satellite- and Ground-Based Observations. Journal of Climate, 2021, , 1-56.                                                                   | 3.2  | 19        |
| 8  | A multi-year short-range hindcast experiment with CESM1 for evaluating climate model moist processes from diurnal to interannual timescales. Geoscientific Model Development, 2021, 14, 73-90.                                 | 3.6  | 9         |
| 9  | Disproportionate control on aerosol burden by light rain. Nature Geoscience, 2021, 14, 72-76.                                                                                                                                  | 12.9 | 39        |
| 10 | Evaluation of the interactive stratospheric ozone (O3v2) module in the E3SM version 1 Earth system model. Geoscientific Model Development, 2021, 14, 1219-1236.                                                                | 3.6  | 9         |
| 11 | Effects of coupling a stochastic convective parameterization with the Zhang–McFarlane scheme on precipitation simulation in the DOE E3SMv1.0 atmosphere model. Geoscientific Model Development, 2021, 14, 1575-1593.           | 3.6  | 13        |
| 12 | Improving Convection Trigger Functions in Deep Convective Parameterization Schemes Using Machine<br>Learning. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002365.                                          | 3.8  | 16        |
| 13 | Evaluation of the Causes of Wet‣eason Dry Biases Over Amazonia in CAM5. Journal of Geophysical<br>Research D: Atmospheres, 2021, 126, e2020JD033859.                                                                           | 3.3  | 6         |
| 14 | Effects of Organized Convection Parameterization on the MJO and Precipitation in E3SMv1. Part I:<br>Mesoscale Heating. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002401.                                 | 3.8  | 14        |
| 15 | Impact of Initialized Land Surface Temperature and Snowpack on Subseasonal to Seasonal Prediction<br>Project, Phase I (LS4P-I): organization and experimental design. Geoscientific Model Development, 2021,<br>14, 4465-4494. | 3.6  | 31        |
| 16 | Comparison of Conventional and Constrained Variational Methods for Computing Largeâ€Scale Budgets<br>and Forcing Fields. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035183.                             | 3.3  | 2         |
| 17 | ENSO Dynamics in the E3SM-1-0, CESM2, and GFDL-CM4 Climate Models. Journal of Climate, 2021, , 1-59.                                                                                                                           | 3.2  | 10        |
| 18 | Impact of a New Cloud Microphysics Parameterization on the Simulations of Mesoscale Convective Systems in E3SM. Journal of Advances in Modeling Earth Systems, 2021, 13, .                                                     | 3.8  | 10        |

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative Forcing. Journal of<br>Advances in Modeling Earth Systems, 2020, 12, e2019MS001851.                                                                                 | 3.8 | 68        |
| 20 | Improvement of Atmospheric Objective Analysis Over Sloping Terrain and Its Impact on<br>Shallowâ€Cumulus Clouds in Largeâ€Eddy Simulations. Journal of Geophysical Research D: Atmospheres,<br>2020, 125, e2020JD032492.                            | 3.3 | 1         |
| 21 | Toward Understanding the Simulated Phase Partitioning of Arctic Single‣ayer Mixedâ€Phase Clouds in<br>E3SM. Earth and Space Science, 2020, 7, e2020EA001125.                                                                                        | 2.6 | 14        |
| 22 | Evaluation of an Improved Convective Triggering Function: Observational Evidence and SCM Tests.<br>Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031651.                                                                        | 3.3 | 8         |
| 23 | A Hindcast Approach to Diagnosing the Equatorial Pacific Cold Tongue SST Bias in CESM1. Journal of Climate, 2020, 33, 1437-1453.                                                                                                                    | 3.2 | 10        |
| 24 | The E3SM version 1 single-column model. Geoscientific Model Development, 2020, 13, 4443-4458.                                                                                                                                                       | 3.6 | 11        |
| 25 | The ARM Data-Oriented Metrics and Diagnostics Package for Climate Models: A New Tool for<br>Evaluating Climate Models with Field Data. Bulletin of the American Meteorological Society, 2020, 101,<br>E1619-E1627.                                  | 3.3 | 7         |
| 26 | The Summertime Precipitation Bias in E3SM Atmosphere Model Version 1 over the Central United States. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8935-8952.                                                                          | 3.3 | 14        |
| 27 | Improved Diurnal Cycle of Precipitation in E3SM With a Revised Convective Triggering Function.<br>Journal of Advances in Modeling Earth Systems, 2019, 11, 2290-2310.                                                                               | 3.8 | 86        |
| 28 | Regionally refined test bed in E3SM atmosphere model version 1 (EAMv1) and applications for high-resolution modeling. Geoscientific Model Development, 2019, 12, 2679-2706.                                                                         | 3.6 | 49        |
| 29 | The DOE E3SM Coupled Model Version 1: Description and Results at High Resolution. Journal of Advances in Modeling Earth Systems, 2019, 11, 4095-4146.                                                                                               | 3.8 | 112       |
| 30 | An Overview of the Atmospheric Component of the Energy Exascale Earth System Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 2377-2411.                                                                                             | 3.8 | 168       |
| 31 | Regional Moisture Budget and Landâ€Atmosphere Coupling Over the U.S. Southern Great Plains Inferred<br>From the ARM Longâ€Term Observations. Journal of Geophysical Research D: Atmospheres, 2019, 124,<br>10091-10108.                             | 3.3 | 10        |
| 32 | Evaluation of Clouds in Version 1 of the E3SM Atmosphere Model With Satellite Simulators. Journal of Advances in Modeling Earth Systems, 2019, 11, 1253-1268.                                                                                       | 3.8 | 55        |
| 33 | Northern Hemisphere Blocking in â^1⁄425â€kmâ€Resolution E3SM v0.3 Atmosphereâ€Land Simulations. Journal of<br>Geophysical Research D: Atmospheres, 2019, 124, 2465-2482.                                                                            | 3.3 | 7         |
| 34 | Differences in Eddyâ€Correlation and Energyâ€Balance Surface Turbulent Heat Flux Measurements and<br>Their Impacts on the Largeâ€Scale Forcing Fields at the ARM SGP Site. Journal of Geophysical Research D:<br>Atmospheres, 2019, 124, 3301-3318. | 3.3 | 19        |
| 35 | The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution. Journal of Advances in Modeling Earth Systems, 2019, 11, 2089-2129.                                                                                           | 3.8 | 404       |
| 36 | Impacts of Representing Heterogeneous Distribution of Cloud Liquid and Ice on Phase Partitioning of<br>Arctic Mixedâ€Phase Clouds with NCAR CAM5. Journal of Geophysical Research D: Atmospheres, 2019, 124,<br>13071-13090.                        | 3.3 | 24        |

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Improved Simulation of the QBO in E3SMv1. Journal of Advances in Modeling Earth Systems, 2019, 11, 3403-3418.                                                                                                                               | 3.8  | 15        |
| 38 | CAUSES: Diagnosis of the Summertime Warm Bias in CMIP5 Climate Models at the ARM Southern Great Plains Site. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2968-2992.                                                          | 3.3  | 33        |
| 39 | CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern<br>Great Plains. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3612-3644.                                                     | 3.3  | 62        |
| 40 | Observationally derived rise in methane surface forcing mediated by water vapour trends. Nature Geoscience, 2018, 11, 238-243.                                                                                                              | 12.9 | 37        |
| 41 | Impact of numerical choices on water conservation in the E3SM Atmosphere Model version 1 (EAMv1).<br>Geoscientific Model Development, 2018, 11, 1971-1988.                                                                                  | 3.6  | 33        |
| 42 | Understanding Cloud and Convective Characteristics in Version 1 of the E3SM Atmosphere Model.<br>Journal of Advances in Modeling Earth Systems, 2018, 10, 2618-2644.                                                                        | 3.8  | 105       |
| 43 | Introduction to CAUSES: Description of Weather and Climate Models and Their Nearâ€Surface<br>Temperature Errors in 5Âday Hindcasts Near the Southern Great Plains. Journal of Geophysical<br>Research D: Atmospheres, 2018, 123, 2655-2683. | 3.3  | 53        |
| 44 | Parametric Sensitivity and Uncertainty Quantification in the Version 1 of E3SM Atmosphere Model<br>Based on Short Perturbed Parameter Ensemble Simulations. Journal of Geophysical Research D:<br>Atmospheres, 2018, 123, 13,046.           | 3.3  | 53        |
| 45 | Automatic tuning of the Community Atmospheric Model (CAM5) by using short-term hindcasts with an improved downhill simplex optimization method. Geoscientific Model Development, 2018, 11, 5189-5201.                                       | 3.6  | 11        |
| 46 | A Diagnostic <scp>PDF</scp> Cloud Scheme to Improve Subtropical Low Clouds in <scp>NCAR</scp><br>Community Atmosphere Model ( <scp>CAM</scp> 5). Journal of Advances in Modeling Earth Systems,<br>2018, 10, 320-341.                       | 3.8  | 29        |
| 47 | The ARM Cloud Radar Simulator for Clobal Climate Models: Bridging Field Data and Climate Models.<br>Bulletin of the American Meteorological Society, 2018, 99, 21-26.                                                                       | 3.3  | 24        |
| 48 | Heterogeneity in Warmâ€5eason Landâ€Atmosphere Coupling Over the U.S. Southern Great Plains. Journal<br>of Geophysical Research D: Atmospheres, 2018, 123, 7867-7882.                                                                       | 3.3  | 12        |
| 49 | CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error<br>Over the Central United States. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2888-2909.                                      | 3.3  | 60        |
| 50 | Relationships between radiation, clouds, and convection during DYNAMO. Journal of Geophysical<br>Research D: Atmospheres, 2017, 122, 2529-2548.                                                                                             | 3.3  | 31        |
| 51 | Large-Eddy Simulation of Shallow Cumulus over Land: A Composite Case Based on ARM Long-Term<br>Observations at Its Southern Great Plains Site. Journals of the Atmospheric Sciences, 2017, 74,<br>3229-3251.                                | 1.7  | 28        |
| 52 | Using ARM Observations to Evaluate Climate Model Simulations of Landâ€Atmosphere Coupling on the<br>U.S. Southern Great Plains. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,524.                                          | 3.3  | 24        |
| 53 | Cloud characteristics, thermodynamic controls and radiative impacts during the Observations and<br>Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment. Atmospheric Chemistry and<br>Physics, 2017, 17, 14519-14541.             | 4.9  | 38        |
| 54 | Investigating the dependence of SCM simulated precipitation and clouds on the spatial scale of largeâ€scale forcing at SGP. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8724-8738.                                           | 3.3  | 4         |

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The SCM Concept and Creation of ARM Forcing Datasets. Meteorological Monographs, 2016, 57, 24.1-24.12.                                                                                                                                               | 5.0 | 28        |
| 56 | An ensemble constrained variational analysis of atmospheric forcing data and its application to evaluate clouds in CAM5. Journal of Geophysical Research D: Atmospheres, 2016, 121, 33-48.                                                           | 3.3 | 7         |
| 57 | Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and<br>diurnal variations of convective systems observed in the GoAmazon2014/5 experiment. Atmospheric<br>Chemistry and Physics, 2016, 16, 14249-14264. | 4.9 | 44        |
| 58 | The Midlatitude Continental Convective Clouds Experiment (MC3E). Bulletin of the American Meteorological Society, 2016, 97, 1667-1686.                                                                                                               | 3.3 | 131       |
| 59 | A varianceâ€based decomposition and global sensitivity index method for uncertainty quantification:<br>Application to retrieved ice cloud properties. Journal of Geophysical Research D: Atmospheres, 2015,<br>120, 4234-4247.                       | 3.3 | 3         |
| 60 | An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models. Journal of Advances in Modeling Earth Systems, 2015, 7, 1810-1827.                                                                        | 3.8 | 54        |
| 61 | Evaluation of cloudâ€resolving model simulations of midlatitude cirrus with ARM and Aâ€train observations. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6597-6618.                                                                     | 3.3 | 10        |
| 62 | The parametric sensitivity of CAM5's MJO. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1424-1444.                                                                                                                                      | 3.3 | 51        |
| 63 | The Midlatitude Continental Convective Clouds Experiment (MC3E) sounding network: operations, processing and analysis. Atmospheric Measurement Techniques, 2015, 8, 421-434.                                                                         | 3.1 | 26        |
| 64 | RACORO continental boundary layer cloud investigations: 1. Case study development and ensemble<br>largeâ€scale forcings. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5962-5992.                                                       | 3.3 | 20        |
| 65 | Quantifying uncertainties of cloud microphysical property retrievals with a perturbation method.<br>Journal of Geophysical Research D: Atmospheres, 2014, 119, 5375-5385.                                                                            | 3.3 | 25        |
| 66 | On the Correspondence between Mean Forecast Errors and Climate Errors in CMIP5 Models. Journal of Climate, 2014, 27, 1781-1798.                                                                                                                      | 3.2 | 110       |
| 67 | Evaluation of intercomparisons of four different types of model simulating <scp>TWP″CE</scp> .<br>Quarterly Journal of the Royal Meteorological Society, 2014, 140, 826-837.                                                                         | 2.7 | 18        |
| 68 | Interactions between cumulus convection and its environment as revealed by the MC3E sounding array. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,784-11,808.                                                                        | 3.3 | 51        |
| 69 | Sensitivity of CAM5-Simulated Arctic Clouds and Radiation to Ice Nucleation Parameterization. Journal of Climate, 2013, 26, 5981-5999.                                                                                                               | 3.2 | 83        |
| 70 | Relationships between the largeâ€scale atmosphere and the smallâ€scale convective state for Darwin,<br>Australia. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,534.                                                                 | 3.3 | 69        |
| 71 | Metrics and Diagnostics for Precipitation-Related Processes in Climate Model Short-Range Hindcasts.<br>Journal of Climate, 2013, 26, 1516-1534.                                                                                                      | 3.2 | 45        |
| 72 | Precipitation Partitioning, Tropical Clouds, and Intraseasonal Variability in GFDL AM2. Journal of Climate, 2013, 26, 5453-5466.                                                                                                                     | 3.2 | 30        |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A singleâ€column model ensemble approach applied to the TWPâ€ICE experiment. Journal of Geophysical<br>Research D: Atmospheres, 2013, 118, 6544-6563.                                                                                     | 3.3 | 33        |
| 74 | On the Correspondence between Short- and Long-Time-Scale Systematic Errors in CAM4/CAM5 for the Year of Tropical Convection. Journal of Climate, 2012, 25, 7937-7955.                                                                     | 3.2 | 79        |
| 75 | An intercomparison of radar-based liquid cloud microphysics retrievals and implications for model evaluation studies. Atmospheric Measurement Techniques, 2012, 5, 1409-1424.                                                             | 3.1 | 19        |
| 76 | Evaluation of cloud fraction and its radiative effect simulated by IPCC AR4 global models against ARM surface observations. Atmospheric Chemistry and Physics, 2012, 12, 1785-1810.                                                       | 4.9 | 80        |
| 77 | A comparison of TWPâ€ICE observational data with cloudâ€resolving model results. Journal of<br>Geophysical Research, 2012, 117, .                                                                                                         | 3.3 | 108       |
| 78 | Toward understanding of differences in current cloud retrievals of ARM groundâ€based measurements.<br>Journal of Geophysical Research, 2012, 117, .                                                                                       | 3.3 | 107       |
| 79 | TWP″CE global atmospheric model intercomparison: Convection responsiveness and resolution impact. Journal of Geophysical Research, 2012, 117, .                                                                                           | 3.3 | 38        |
| 80 | Aerosol first indirect effects on nonâ€precipitating lowâ€level liquid cloud properties as simulated by CAM5 at ARM sites. Geophysical Research Letters, 2012, 39, .                                                                      | 4.0 | 66        |
| 81 | Sensitivity of aerosol indirect effects to cloud nucleation and autoconversion parameterizations in shortâ€range weather forecasts during the May 2003 aerosol IOP. Journal of Advances in Modeling Earth Systems, 2012, 4, .             | 3.8 | 11        |
| 82 | Regional assessment of the parameterâ€dependent performance of CAM4 in simulating tropical clouds.<br>Geophysical Research Letters, 2012, 39, .                                                                                           | 4.0 | 31        |
| 83 | Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations.<br>Journal of Geophysical Research, 2011, 116, .                                                                                            | 3.3 | 62        |
| 84 | Indirect and Semi-direct Aerosol Campaign. Bulletin of the American Meteorological Society, 2011, 92, 183-201.                                                                                                                            | 3.3 | 228       |
| 85 | A Comparison of MERRA and NARR Reanalyses with the DOE ARM SGP Data. Journal of Climate, 2011, 24, 4541-4557.                                                                                                                             | 3.2 | 124       |
| 86 | Estimating the Ice Crystal Enhancement Factor in the Tropics. Journals of the Atmospheric Sciences, 2011, 68, 1424-1434.                                                                                                                  | 1.7 | 26        |
| 87 | Modelling convective processes during the suppressed phase of a Madden–Julian oscillation:<br>Comparing singleâ€column models with cloudâ€resolving models. Quarterly Journal of the Royal<br>Meteorological Society, 2010, 136, 333-353. | 2.7 | 20        |
| 88 | CLOUDS AND MORE: ARM Climate Modeling Best Estimate Data. Bulletin of the American<br>Meteorological Society, 2010, 91, 13-20.                                                                                                            | 3.3 | 139       |
| 89 | Observed Large-Scale Structures and Diabatic Heating and Drying Profiles during TWP-ICE. Journal of Climate, 2010, 23, 57-79.                                                                                                             | 3.2 | 91        |
| 90 | An Indirect Effect of Ice Nuclei on Atmospheric Radiation. Journals of the Atmospheric Sciences, 2009, 66, 41-61.                                                                                                                         | 1.7 | 52        |

| #   | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Intercomparison of model simulations of mixedâ€phase clouds observed during the ARM Mixedâ€Phase<br>Arctic Cloud Experiment. II: Multilayer cloud. Quarterly Journal of the Royal Meteorological Society,<br>2009, 135, 1003-1019.    | 2.7 | 84        |
| 92  | Intercomparison of model simulations of mixedâ€phase clouds observed during the ARM Mixedâ€Phase<br>Arctic Cloud Experiment. I: singleâ€layer cloud. Quarterly Journal of the Royal Meteorological Society,<br>2009, 135, 979-1002.   | 2.7 | 224       |
| 93  | A contribution by ice nuclei to global warming. Quarterly Journal of the Royal Meteorological<br>Society, 2009, 135, 1614-1629.                                                                                                       | 2.7 | 38        |
| 94  | Testing ice microphysics parameterizations in the NCAR Community Atmospheric Model Version 3 using<br>Tropical Warm Pool–International Cloud Experiment data. Journal of Geophysical Research, 2009, 114, .                           | 3.3 | 12        |
| 95  | Simulations of Arctic mixedâ€phase clouds in forecasts with CAM3 and AM2 for Mâ€PACE. Journal of Geophysical Research, 2008, 113, .                                                                                                   | 3.3 | 44        |
| 96  | Climate Model Forecast Experiments for TOGA COARE. Monthly Weather Review, 2008, 136, 808-832.                                                                                                                                        | 1.4 | 39        |
| 97  | Evaluating Clouds in Long-Term Cloud-Resolving Model Simulations with Observational Data.<br>Journals of the Atmospheric Sciences, 2007, 64, 4153-4177.                                                                               | 1.7 | 56        |
| 98  | Investigation of the first and second aerosol indirect effects using data from the May 2003 Intensive<br>Operational Period at the Southern Great Plains. Journal of Geophysical Research, 2007, 112, .                               | 3.3 | 18        |
| 99  | Evaluation of a new mixedâ€phase cloud microphysics parameterization with CAM3 singleâ€column model and Mâ€PACE observations. Geophysical Research Letters, 2007, 34, .                                                               | 4.0 | 21        |
| 100 | An assessment of ECMWF analyses and model forecasts over the North Slope of Alaska using observations from the ARM Mixed-Phase Arctic Cloud Experiment. Journal of Geophysical Research, 2006, 111, .                                 | 3.3 | 26        |
| 101 | Developing large-scale forcing data for single-column and cloud-resolving models from the<br>Mixed-Phase Arctic Cloud Experiment. Journal of Geophysical Research, 2006, 111, .                                                       | 3.3 | 24        |
| 102 | Diagnosis of the summertime warm and dry bias over the U.S. Southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophysical Research Letters, 2006, 33, n/a-n/a.                                    | 4.0 | 112       |
| 103 | Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. Journal of Geophysical Research, 2005, 110, .                                                                | 3.3 | 250       |
| 104 | Diagnosis of Community Atmospheric Model 2 (CAM2) in numerical weather forecast configuration at<br>Atmospheric Radiation Measurement sites. Journal of Geophysical Research, 2005, 110, .                                            | 3.3 | 45        |
| 105 | Moisture and temperature balances at the Atmospheric Radiation Measurement Southern Great Plains<br>Site in forecasts with the Community Atmosphere Model (CAM2). Journal of Geophysical Research,<br>2005, 110, .                    | 3.3 | 35        |
| 106 | Simulations of midlatitude frontal clouds by single-column and cloud-resolving models during the<br>Atmospheric Radiation Measurement March 2000 cloud intensive operational period. Journal of<br>Geophysical Research, 2005, 110, . | 3.3 | 66        |
| 107 | Modeling springtime shallow frontal clouds with cloud-resolving and single-column models.<br>Journal of Geophysical Research, 2005, 110, .                                                                                            | 3.3 | 51        |
| 108 | Evaluating Parameterizations in General Circulation Models: Climate Simulation Meets Weather Prediction. Bulletin of the American Meteorological Society, 2004, 85, 1903-1916.                                                        | 3.3 | 186       |

| #   | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Developing long-term single-column model/cloud system–resolving model forcing data using<br>numerical weather prediction products constrained by surface and top of the atmosphere<br>observations. Journal of Geophysical Research, 2004, 109, . | 3.3 | 104       |
| 110 | Impact of a revised convective triggering mechanism on Community Atmosphere Model, Version 2, simulations: Results from short-range weather forecasts. Journal of Geophysical Research, 2004, 109, .                                              | 3.3 | 60        |
| 111 | Comparison of SCM and CSRM forcing data derived from the ECMWF model and from objective analysis at the ARM SGP site. Journal of Geophysical Research, 2003, 108, .                                                                               | 3.3 | 20        |
| 112 | Intercomparison and evaluation of cumulus parametrizations under summertime midlatitude continental conditions. Quarterly Journal of the Royal Meteorological Society, 2002, 128, 1095-1135.                                                      | 2.7 | 119       |
| 113 | An intercomparison of cloud-resolving models with the Atmospheric Radiation Measurement summer<br>1997 Intensive Observation Period data. Quarterly Journal of the Royal Meteorological Society, 2002,<br>128, 593-624.                           | 2.7 | 192       |
| 114 | Variational Objective Analysis for Atmospheric Field Programs: A Model Assessment. Journals of the Atmospheric Sciences, 2002, 59, 3436-3456.                                                                                                     | 1.7 | 8         |
| 115 | Objective Analysis of ARM IOP Data: Method and Sensitivity. Monthly Weather Review, 2001, 129, 295-311.                                                                                                                                           | 1.4 | 174       |
| 116 | Impact of the convection triggering function on single-column model simulations. Journal of<br>Geophysical Research, 2000, 105, 14983-14996.                                                                                                      | 3.3 | 112       |
| 117 | A comparison of single column model simulations of summertime midlatitude continental convection. Journal of Geophysical Research, 2000, 105, 2091-2124.                                                                                          | 3.3 | 107       |
| 118 | Relationship between Cloud Radiative Forcing and Sea Surface Temperatures over the Entire Tropical<br>Oceans. Journal of Climate, 1996, 9, 1374-1384.                                                                                             | 3.2 | 24        |