
Elisabetta Campodoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1883667/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electroconductive and injectable hydrogels based on gelatin and PEDOT:PSS for a minimally invasive approach in nervous tissue regeneration. Biomaterials Science, 2022, 10, 2040-2053.	5.4	13
2	Additive-Free Gelatine-Based Devices for Chondral Tissue Regeneration: Shaping Process Comparison among Mould Casting and Three-Dimensional Printing. Polymers, 2022, 14, 1036.	4.5	4
3	Nanotechnological approach and bio-inspired materials to face degenerative diseases in aging. Aging Clinical and Experimental Research, 2021, 33, 805-821.	2.9	7
4	Unconventional, Nature-Inspired Approaches to Develop Bioceramics for Regenerative Medicine. , 2021, , 758-771.		0
5	Dual-crosslinked 3D printed gelatin scaffolds with potential for temporomandibular joint cartilage regeneration. Biomedical Materials (Bristol), 2021, 16, 035026.	3.3	9
6	Targeting mesenchymal stromal cells plasticity to reroute acute myeloid leukemia course. Blood, 2021, 138, 557-570.	1.4	26
7	Nature-Inspired Unconventional Approaches to Develop 3D Bioceramic Scaffolds with Enhanced Regenerative Ability. Biomedicines, 2021, 9, 916.	3.2	14
8	Medicated Hydroxyapatite/Collagen Hybrid Scaffolds for Bone Regeneration and Local Antimicrobial Therapy to Prevent Bone Infections. Pharmaceutics, 2021, 13, 1090.	4.5	17
9	3D Cocultures of Osteoblasts and Staphylococcus aureus on Biomimetic Bone Scaffolds as a Tool to Investigate the Host–Pathogen Interface in Osteomyelitis. Pathogens, 2021, 10, 837.	2.8	6
10	Magnetic and radio-labeled bio-hybrid scaffolds to promote and track <i>in vivo</i> the progress of bone regeneration. Biomaterials Science, 2021, 9, 7575-7590.	5.4	9
11	Calcium-Based Biomineralization: A Smart Approach for the Design of Novel Multifunctional Hybrid Materials. Journal of Composites Science, 2021, 5, 278.	3.0	9
12	Cross-linked gelatin-nanocellulose scaffolds for bone tissue engineering. Materials Letters, 2020, 264, 127326.	2.6	46
13	Optimized production of a highâ€performance hybrid biomaterial: biomineralized spider silk for bone tissue engineering. Journal of Applied Polymer Science, 2020, 137, 48739.	2.6	15
14	Mimicking Natural Microenvironments: Design of 3D-Aligned Hybrid Scaffold for Dentin Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 836.	4.1	10
15	Overcoming the Design Challenge in 3D Biomimetic Hybrid Scaffolds for Bone and Osteochondral Regeneration by Factorial Design. Frontiers in Bioengineering and Biotechnology, 2020, 8, 743.	4.1	11
16	Blending Gelatin and Cellulose Nanofibrils: Biocomposites with Tunable Degradability and Mechanical Behavior. Nanomaterials, 2020, 10, 1219.	4.1	14
17	Multifunctional graphene oxide/biopolymer composite aerogels for microcontaminants removal from drinking water. Chemosphere, 2020, 259, 127501.	8.2	34
18	Scaffold-based 3D cellular models mimicking the heterogeneity of osteosarcoma stem cell niche. Scientific Reports, 2020, 10, 22294.	3.3	46

Elisabetta Campodoni

#	Article	IF	CITATIONS
19	Gene Modification and Three-Dimensional Scaffolds as Novel Tools to Allow the Use of Postnatal Thymic Epithelial Cells for Thymus Regeneration Approaches. Stem Cells Translational Medicine, 2019, 8, 1107-1122.	3.3	31
20	55: Bone Regeneration Assessment Through SPECT/CT Imaging in a Mouse Calvarial Defect Model. Transplantation, 2019, 103, S17-S17.	1.0	0
21	Nature-Inspired Processes and Structures: New Paradigms to Develop Highly Bioactive Devices for Hard Tissue Regeneration. , 2019, , .		4
22	Differences in osteogenic induction of human mesenchymal stem cells between a tailored 3D hybrid scaffold and a 2D standard culture. Journal of Materials Science: Materials in Medicine, 2019, 30, 136.	3.6	6
23	Mesenchymal Stromal Cell-Seeded Biomimetic Scaffolds as a Factory of Soluble RANKL in Rankl-Deficient Osteopetrosis. Stem Cells Translational Medicine, 2019, 8, 22-34.	3.3	34
24	Inflammatory responses and tissue reactions to wood-Based nanocellulose scaffolds. Materials Science and Engineering C, 2019, 97, 208-221.	7.3	31
25	Polymeric 3D scaffolds for tissue regeneration: Evaluation of biopolymer nanocomposite reinforced with cellulose nanofibrils. Materials Science and Engineering C, 2019, 94, 867-878.	7.3	37
26	Acute Myeloid Leukemia (AML) in a 3D Bone Marrow Niche Showed High Performance for in Vitro and In Vivo Drug Screenings. Blood, 2019, 134, 544-544.	1.4	2
27	Evaluation of different crosslinking agents on hybrid biomimetic collagen-hydroxyapatite composites for regenerative medicine. International Journal of Biological Macromolecules, 2018, 106, 739-748.	7.5	48
28	A Graded Multifunctional Hybrid Scaffold with Superparamagnetic Ability for Periodontal Regeneration. International Journal of Molecular Sciences, 2018, 19, 3604.	4.1	26
29	Biomineralization process generating hybrid nano- and micro-carriers. , 2018, , 19-42.		2
30	Ribose mediated crosslinking of collagen-hydroxyapatite hybrid scaffolds for bone tissue regeneration using biomimetic strategies. Materials Science and Engineering C, 2017, 77, 594-605.	7.3	51
31	3D porous collagen scaffolds reinforced by glycation with ribose for tissue engineering application. Biomedical Materials (Bristol), 2017, 12, 055002.	3.3	25
32	Development of innovative hybrid and intrinsically magnetic nanobeads as a drug delivery system. Nanomedicine, 2016, 11, 2119-2130.	3.3	13
33	Bio-inspired assembling/mineralization process as a flexible approach to develop new smart scaffolds for the regeneration of complex anatomical regions. Journal of the European Ceramic Society, 2016, 36, 2857-2867	5.7	24