Vincent Laude

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1883458/publications.pdf

Version: 2024-02-01

288 papers 8,545 citations

44069 48 h-index 84 g-index

290 all docs

290 docs citations

times ranked

290

3851 citing authors

#	Article	IF	CITATIONS
1	Reconfigurable waveguides defined by selective fluid filling in two-dimensional phononic metaplates. Mechanical Systems and Signal Processing, 2022, 165, 108392.	8.0	23
2	Phononic crystals at various frequencies. APL Materials, 2022, 10, .	5.1	3
3	Brillouin Light Scattering Characterisation of Gray Tone 3D Printed Isotropic Materials. Materials, 2022, 15, 4070.	2.9	3
4	Singleâ€Stepâ€Lithography Microâ€Stepper Based on Frictional Contact and Chiral Metamaterial. Small, 2022, 18, .	10.0	12
5	Closed tubular mechanical metamaterial as lightweight load-bearing structure and energy absorber. Journal of the Mechanics and Physics of Solids, 2022, 167, 104957.	4.8	15
6	Wave propagation in one-dimensional fluid-saturated porous phononic crystals with partial-open pore interfaces. International Journal of Mechanical Sciences, 2021, 195, 106227.	6.7	20
7	Ultra-broadband passive acoustic metasurface for wide-angle carpet cloaking. Materials and Design, 2021, 199, 109414.	7.0	33
8	Three-dimensional phononic crystal with ultra-wide bandgap at megahertz frequencies. Applied Physics Letters, 2021, 118, .	3.3	12
9	Designing thermal energy harvesting devices with natural materials through optimized microstructures. International Journal of Heat and Mass Transfer, 2021, 169, 120948.	4.8	28
10	Acoustic Topological Circuitry in Square and Rectangular Phononic Crystals. Physical Review Applied, 2021, 15, .	3.8	10
11	Effective anisotropy of periodic acoustic and elastic composites. Journal of Applied Physics, 2021, 129, .	2.5	4
12	Principles and properties of phononic crystal waveguides. APL Materials, 2021, 9, .	5.1	19
13	Guided Lamb waves in reconfigurable phononic crystal waveguides. APL Materials, 2021, 9, .	5.1	10
14	4D Thermomechanical metamaterials for soft microrobotics. Communications Materials, 2021, 2, .	6.9	25
15	Acousto-optic cavity coupling in 2D phoxonic crystal with combined convex and concave holes. Journal of Applied Physics, 2021, 130, 123104.	2.5	6
16	Experimental observation of roton-like dispersion relations in metamaterials. Science Advances, 2021, 7, eabm2189.	10.3	41
17	Light-weight shell-lattice metamaterials for mechanical shock absorption. International Journal of Mechanical Sciences, 2020, 169, 105288.	6.7	109
18	Hybridization of resonant modes and Bloch waves in acoustoelastic phononic crystals. Physical Review B, 2020, 102 , .	3.2	9

#	Article	IF	Citations
19	Phononic Coupled-Resonator Waveguide Micro-Cavities. Applied Sciences (Switzerland), 2020, 10, 6751.	2.5	9
20	Optimal isotropic, reusable truss lattice material with near-zero Poisson's ratio. Extreme Mechanics Letters, 2020, 41, 101048.	4.1	30
21	Evanescent waves in two-dimensional fluid-saturated porous metamaterials with a transversely isotropic matrix. Physical Review B, 2020, 101, .	3.2	7
22	Experimental observations of topologically guided water waves within non-hexagonal structures. Applied Physics Letters, 2020, 116, 131603.	3.3	18
23	Collective Resonances of a Chain of Coupled Phononic Microresonators. Physical Review Applied, 2020, 13, .	3.8	22
24	Introduction to mechanical metamaterials and their effective properties. Comptes Rendus Physique, 2020, 21, 751-765.	0.9	2
25	Phononic Crystals., 2020,,.		19
26	Observation of topological gravity-capillary waves in a water wave crystal. New Journal of Physics, 2019, 21, 083031.	2.9	18
27	Complex-Eigenfrequency Band Structure of Viscoelastic Phononic Crystals. Applied Sciences (Switzerland), 2019, 9, 2825.	2.5	9
28	Dipole states and coherent interaction in surface-acoustic-waveÂcoupled phononic resonators. Nature Communications, 2019, 10, 4583.	12.8	20
29	Special Issue on Brillouin Scattering and Optomechanics. Applied Sciences (Switzerland), 2019, 9, 3745.	2.5	2
30	Wave propagation in one-dimensional fluid-saturated porous metamaterials. Physical Review B, 2019, 99, .	3.2	17
31	Thermal cloaking of complex objects with the neutral inclusion and the coordinate transformation methods. AIP Advances, 2019, 9, .	1.3	9
32	Non-Singular Homogeneous Polyhedral Heat Cloak and Its Realization. ES Energy & Environments, 2019,	1.1	1
33	Extraordinary nonlinear transmission modulation in a doubly-resonant optomechanical structure (Conference Presentation). , 2019, , .		0
34	Ultraâ€Wide Band Gap in Twoâ€Dimensional Phononic Crystal with Combined Convex and Concave Holes. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1700317.	2.4	29
35	Low-frequency band gap in cross-like holey phononic crystal strip. Journal Physics D: Applied Physics, 2018, 51, 045601.	2.8	29
36	Evanescent-wave tuning of a locally resonant sonic crystal. Applied Physics Letters, 2018, 113, .	3.3	11

#	Article	IF	CITATIONS
37	Channeled spectrum in the transmission of phononic crystal waveguides. Journal of Sound and Vibration, 2018, 437, 410-421.	3.9	34
38	Guiding and splitting Lamb waves in coupled-resonator elastic waveguides. Composite Structures, 2018, 206, 588-593.	5.8	51
39	Stochastic excitation method for calculating the resolvent band structure of periodic media and waveguides. Physical Review B, 2018, 97, .	3.2	12
40	Generation of coherent acoustic beams in solids by mixing of counterpropagating, detuned optical beams [Invited]. Applied Optics, 2018, 57, C77.	1.8	4
41	Spontaneous Brillouin Scattering Spectrum and Coherent Brillouin Gain in Optical Fibers. Applied Sciences (Switzerland), 2018, 8, 907.	2.5	5
42	Two Methods to Broaden the Bandwidth of a Nonlinear Piezoelectric Bimorph Power Harvester. Journal of Vibration and Acoustics, Transactions of the ASME, 2017, 139, .	1.6	8
43	A differential optical interferometer for measuring short pulses of surface acoustic waves. Ultrasonics, 2017, 80, 72-77.	3.9	1
44	Multiple low-frequency broad band gaps generated by a phononic crystal of periodic circular cavity sandwich plates. Composite Structures, 2017, 176, 294-303.	5.8	35
45	Surface-Wave Coupling to Single Phononic Subwavelength Resonators. Physical Review Applied, 2017, 8, .	3.8	22
46	Tunable fluid-filled phononic metastrip. Applied Physics Letters, 2017, 111, .	3.3	40
47	Reconfigurable Phononic-Crystal Circuits Formed by Coupled Acoustoelastic Resonators. Physical Review Applied, 2017, 8, .	3.8	39
48	Surface Brillouin scattering in optical microfibers. , 2017, , .		0
49	Piezoelectric harvester scavenges energy from cavity of phononic crystal. , 2017, , .		1
50	Extraordinary nonlinear transmission modulation in a doubly resonant acousto-optical structure. Optica, 2017, 4, 1245.	9.3	15
51	Notice of Removal: Coupling of mechanical resonators under surface acoustic wave excitation. , 2017,		0
52	Notice of Removal: Stochastic generation of the phononic band structure of lossy and infinite crystals., 2017,,.		0
53	Notice of Removal: Observation of band gaps in chirped interdigital transducers., 2017,,.		1
54	Longitudinal Near-Field Coupling between Acoustic Resonators Grafted onto a Waveguide. Crystals, 2017, 7, 323.	2.2	7

#	Article	IF	CITATIONS
55	Formation of Bragg Band Gaps in Anisotropic Phononic Crystals Analyzed With the Empty Lattice Model. Crystals, 2016, 6, 52.	2.2	21
56	Experimental observation of surface acoustic wave Brillouin scattering in a small-core photonic crystal fiber. , $2016, , .$		2
57	Guidance of surface elastic waves along a linear chain of pillars. AIP Advances, 2016, 6, .	1.3	23
58	Phononic crystals: Harnessing the propagation of sound, elastic waves, and phonons. Comptes Rendus Physique, 2016, 17, 497-499.	0.9	0
59	Phoxonic crystals for harnessing the interaction of light and sound. , 2016, , .		1
60	Surface Brillouin scattering in photonic crystal fibers. Optics Letters, 2016, 41, 3269.	3.3	11
61	Development and characterization of a differential interferometer setup using ultra-wideband SAW devices. , 2016, , .		0
62	Computational Problems and Numerical Techniques for the Analysis of Phononic Crystals. , 2016, , 85-107.		2
63	Observation of surface Brillouin scattering in microstructured optical fibers. , 2016, , .		0
64	Wave propagation in two-dimensional viscoelastic metamaterials. Physical Review B, 2015, 92, .	3.2	96
65	Lagrangian description of Brillouin scattering and electrostriction in nanoscale optical waveguides. New Journal of Physics, 2015, 17, 125003.	2.9	21
66	Guidance of surface waves in a micron-scale phononic crystal line-defect waveguide. Applied Physics Letters, 2015, 106, .	3.3	56
67	Enhanced structural sensitivity of hybrid-mode acoustic phonons in axially-varying photonic crystal fiber. Optics Express, 2015, 23, 23329.	3.4	0
68	Reduction and control of stimulated Brillouin scattering in polymer-coated chalcogenide optical microwires. Optics Letters, 2014, 39, 482.	3.3	33
69	All-optical generation of surface acoustic waves in a silica optical microwire. Proceedings of SPIE, 2014, , .	0.8	0
70	Brillouin light scattering from surface acoustic waves in photonic microwires. , 2014, , .		0
71	Simultaneous bandgaps in LiNbO3 phoxonic crystal slab. Optics Express, 2014, 22, 16288.	3.4	20
72	Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs. Journal of Applied Physics, 2014, 115, .	2.5	25

#	Article	IF	CITATIONS
73	Excitation of surface waves on one-dimensional solid–fluid phononic crystals and the beam displacement effect. AIP Advances, 2014, 4, 124202.	1.3	3
74	Modeling light-sound interaction in nanoscale cavities and waveguides. Nanophotonics, 2014, 3, 413-440.	6.0	82
75	Coupling of evanescent and propagating guided modes in locally resonant phononic crystals. Journal Physics D: Applied Physics, 2014, 47, 475502.	2.8	25
76	Stimulated Brillouin scattering in polymer-coated chalcogenide microfibers. , 2014, , .		0
77	Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre. Nature Communications, 2014, 5, 5242.	12.8	142
78	Tunable stimulated Brillouin scattering in hybrid polymer-chalcogenide tapered fibers., 2014,,.		4
79	Guided wave propagation along the surface of a one-dimensional solid–fluid phononic crystal. Journal Physics D: Applied Physics, 2013, 46, 365305.	2.8	16
80	Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities. Physical Review B, 2013, 88, .	3.2	48
81	Blazed phononic crystal grating. Applied Physics Letters, 2013, 102, .	3.3	11
82	Observation of surface acoustic wave Brillouin scattering in optical microfibers. , 2013, , .		1
83	Local resonances in phononic crystals and in random arrangements of pillars on a surface. Journal of Applied Physics, 2013, 114, 104503.	2.5	66
84	Broadband evolution of phononic-crystal-waveguide eigenstates in real- and k-spaces. Scientific Reports, 2013, 3, 3351.	3.3	57
85	Dispersion relation of coupled-resonator acoustic waveguides formed by defect cavities in a phononic crystal. Journal Physics D: Applied Physics, 2013, 46, 475301.	2.8	32
86	Generation of phonons from electrostriction in small-core optical waveguides. AIP Advances, 2013, 3, .	1.3	33
87	Effect of loss on the dispersion relation of photonic and phononic crystals. Physical Review B, 2013, 88, .	3.2	27
88		3.2	27
	88, . Surface acoustic wave guiding in a diffractionless high aspect ratio transducer. Applied Physics		

#	Article	IF	Citations
91	Numerical investigation of electrostrictive forces in submicron phoxonic waveguide. Proceedings of SPIE, 2012, , .	0.8	0
92	Numerical investigation of diffraction of acoustic waves by phononic crystals. AIP Conference Proceedings, 2012 , , .	0.4	1
93	Non-radiative complete surface acoustic wave bandgap for finite-depth holey phononic crystal in lithium niobate. Applied Physics Letters, 2012, 100, .	3.3	45
94	Opto-acoustic coupling and Brillouin phenomena in microstructure optical fibers. , 2012, , .		0
95	Honeycomb Photonic Crystal Waveguides in a Suspended Silicon Slab. IEEE Photonics Technology Letters, 2012, 24, 2056-2059.	2.5	7
96	Scholte-Stoneley waves on 2D phononic crystal gratings. , 2012, , .		0
97	SAW waveguiding in high aspect ratio transducers. , 2012, , .		0
98	Phononic crystal diffraction gratings. Journal of Applied Physics, 2012, 111, .	2.5	23
99	Electrostriction and guidance of acoustic phonons in optical fibers. Physical Review B, 2012, 86, .	3.2	65
100	Experimental demonstration of waveguiding in honeycomb and square-lattice silicon photonic crystal membranes. Proceedings of SPIE, 2012, , .	0.8	1
101	Photon and acoustic phonon coupling in phoxonic crystals. Proceedings of SPIE, 2012, , .	0.8	2
102	Light modulation in phoxonic nanocavities. Microelectronic Engineering, 2012, 90, 155-158.	2.4	21
103	Structuring Lithium Niobate: Collective Etching and FIB Milling for Photonics and Phononics. , 2012, , .		0
104	Material loss influence on the complex band structure and group velocity in phononic crystals. Physical Review B, 2011, 83, .	3.2	109
105	Frequency-selective excitation of guided acoustic modes in a photonic crystal fiber. Optics Express, 2011, 19, 7689.	3.4	25
106	Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs. Optics Express, 2011, 19, 9690.	3.4	83
107	PhoXonic architectures for tailoring the acousto-optic interaction., 2011,,.		2
108	Observation of surface-guided waves in holey hypersonic phononic crystal. Applied Physics Letters, 2011, 98, .	3.3	48

#	Article	IF	Citations
109	Material anisotropy unveiled by random scattering of surface acoustic waves. Applied Physics Letters, 2011, 98, 063506.	3.3	3
110	Experimental observation of locally-resonant and Bragg band gaps for surface guided waves in a phononic crystal of pillars. Physical Review B, $2011,83$, .	3.2	219
111	Observation of band gaps in the gigahertz range and deaf bands in a hypersonic aluminum nitride phononic crystal slab. Applied Physics Letters, 2011, 98, .	3.3	29
112	Phononic band gap in honeycomb crystal: Towards simultaneous photonic and phononic band gaps. , 2011, , .		0
113	Band gaps and cavity modes in dual phononic and photonic strip waveguides. AIP Advances, 2011, 1, .	1.3	48
114	Bloch wave deafness and modal conversion at a phononic crystal boundary. AIP Advances, 2011, 1, .	1.3	31
115	Is there really a sound line limit for surface waves in phononic crystals?. , 2011, , .		0
116	Notice of Removal: Prediction and measurement of boundary waves at the interface between LiNbO ₃ and silicon. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 1655-1663.	3.0	4
117	Locally resonant surface acoustic wave band gaps in a two-dimensional phononic crystal of pillars on a surface. Physical Review B, 2010, 81, .	3.2	212
118	Polarization state and level repulsion in two-dimensional phononic crystals and waveguides in the presence of material anisotropy. Journal Physics D: Applied Physics, 2010, 43, 185401.	2.8	43
119	Material loss effect on the dispersion of Bloch waves in phononic crystals. , 2010, , .		0
120	Acousto-optically tunable lithium niobate photonic crystal. Applied Physics Letters, 2010, 96, .	3.3	53
121	Octave omnidirectional band gap in a three-dimensional phononic crystal. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 1621-1625.	3.0	27
122	Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs. Optics Express, 2010, 18, 14301.	3.4	117
123	Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity. Physical Review B, 2010, 82,	3.2	96
124	Design of waveguides in silicon phoxonic crystal slabs. , 2010, , .		4
125	Observation of brillouin linewidth broadening and decay time in photonic crystal fiber. , 2010, , .		0
126	Dual phononic and photonic band gaps in a periodic array of pillars deposited on a thin plate. Physical Review B, 2010, 82, .	3.2	65

#	Article	IF	Citations
127	Computation of plate wave dispersion diagrams and surface wave velocities without explicit boundary conditions. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 1649-1654.	3.0	3
128	Experimental observation of Brillouin linewidth broadening and decay time in photonic crystal fiber. , 2010, , .		1
129	Hypersonic phononic crystal for surface acoustic waves. , 2010, , .		4
130	Guided Acoustic Wave Brillouin Scattering in a Nanostructure Core Fiber. , 2010, , .		0
131	Complex Band Structure of Phononic Crystals and the Diffraction Problem. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2010, , 165-173.	0.2	0
132	Polarization States in 2D Phononic Crystals and Phononic Crystal Waveguides. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2010, , 341-347.	0.2	0
133	Improving surface acousto-optical interaction by high aspect ratio electrodes. Journal of Applied Physics, 2009, 106, .	2.5	7
134	Tailoring simultaneous photonic and phononic band gaps. Journal of Applied Physics, 2009, 106, .	2.5	99
135	Highly selective electroplated nickel mask for lithium niobate dry etching. Journal of Applied Physics, 2009, 105, .	2.5	42
136	Energy storage and dispersion of surface acoustic waves trapped in a periodic array of mechanical resonators. Journal of Applied Physics, 2009, 105, .	2.5	45
137	A mixed finite element/boundary element approach to simulate complex guided elastic wave periodic transducers. Journal of Applied Physics, 2009, 105, .	2.5	34
138	Characterization of surface acoustic wave focusing by an annular interdigital transducer., 2009,,.		5
139	Computation of plate wave dispersion diagrams and surface wave velocities without explicit boundary conditions. , 2009, , .		0
140	Simultaneous photonic and phononic band gaps in a two-dimensional lithium niobate crystal., 2009,,.		0
141	14-fs high temporal quality injector for ultra-high intensity laser. Optics Communications, 2009, 282, 1374-1379.	2.1	17
142	Evanescent Bloch waves and the complex band structure of phononic crystals. Physical Review B, 2009, 80, .	3.2	162
143	Photonic and Phononic Band Gap Properties ofÂLithium Niobate. Springer Series in Materials Science, 2009, , 307-336.	0.6	3
144	Role of microstructure on guided acoustic wave Brillouin scattering in photonic crystal fibers. Proceedings of SPIE, 2009, , .	0.8	1

#	Article	IF	Citations
145	Evanescent Bloch waves in phononic crystals. Proceedings of SPIE, 2009, , .	0.8	3
146	3-D electrostatic hybrid element model for SAW interdigital transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 686-695.	3.0	4
147	Ultrasonic and hypersonic phononic crystals. Proceedings of SPIE, 2008, , .	0.8	1
148	The OmniSaw device concept (OmniSAW: Omnidirectional band gap for surface acoustic wave). , 2008, ,		2
149	Band structure of evanescent waves in phononic crystals. , 2008, , .		0
150	Subwavelength focusing of surface acoustic waves generated by an annular interdigital transducer. Applied Physics Letters, 2008, 92, .	3.3	53
151	Lithium niobate surface structuration for phononic crystal fabrication., 2008,,.		1
152	Unified and stable scattering matrix formalism for acoustic waves in piezoelectric stacks. Journal of Applied Physics, 2008, 104, 064916.	2.5	8
153	P3J-1 Direct Observation of Surface Acoustic Wave Interaction with a Phononic Crystal. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	0
154	Design guidelines of 1-3 piezoelectric composites dedicated to ultrasound imaging transducers, based on frequency band-gap considerations. Journal of the Acoustical Society of America, 2007, 122, 786-793.	1.1	10
155	8E-5 Full 3D SAW IDT Boundary Element Model for Massless Electrodes. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	3
156	Scattering of surface acoustic waves by a phononic crystal revealed by heterodyne interferometry. Applied Physics Letters, 2007, 91, 083517.	3.3	46
157	Waveguiding inside the complete band gap of a phononic crystal slab. Physical Review E, 2007, 76, 056601.	2.1	100
158	Complete band gaps and deaf bands of triangular and honeycomb water-steel phononic crystals. Journal of Applied Physics, 2007, 101, 044903.	2.5	75
159	P4L-3 Anisotropic Wave-Surface Shaped Annular Interdigital Transducer. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	2
160	Guided acoustic wave Brillouin scattering in photonic crystal fibers. Optics Letters, 2007, 32, 17.	3.3	82
161	Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber. Optics Express, 2007, 15, 15517.	3.4	85
162	PO-11 Experimental Study of Complete Band Gaps and Waveguiding Inside Phononic Crystal Slabs. , 2007, , .		0

#	Article	IF	Citations
163	Comprehensive characterization of Surface acoustic wave trapping in a periodic array of high aspect ratio electrodes. Frequency Control Symposium and Exhibition, Proceedings of the IEEE International, 2007, , .	0.0	0
164	High-frequency surface acoustic waves excited on thin-oriented LiNbO/sub 3/ single-crystal layers transferred onto silicon. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 870-876.	3.0	32
165	Excitation of acoustic waves at the interface between lithium niobate and silicon plates. Frequency Control Symposium and Exhibition, Proceedings of the IEEE International, 2007, , .	0.0	1
166	Modulation of the extraordinary optical transmission by surface acoustic waves. Physical Review B, $2007, 76, .$	3.2	19
167	3E-3 Dispersion and Polarization of Surface Waves Trapped in High Aspect Ratio Electrode Arrays. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	0
168	Complete band gaps in two-dimensional phononic crystal slabs. Physical Review E, 2006, 74, 046610.	2.1	358
169	Surface Green's function of a piezoelectric half-space. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 420-428.	3.0	26
170	Experimental Observation of Large Guided Acoustic Wave Brillouin Scattering in Photonic Crystal Fibres., 2006,,.		2
171	Lithium niobate phononic crystal for surface acoustic waves. , 2006, , .		2
172	Evidence for complete surface wave band gap in a piezoelectric phononic crystal. Physical Review E, 2006, 73, 065601.	2.1	274
173	6E-2 Surface Acoustic Wave Trapping in a Periodic Array of High Aspect Ratio Electrodes. , 2006, , .		1
174	Raman-like light scattering from acoustic phonons in photonic crystal fiber. Optics Express, 2006, 14, 4141.	3.4	96
175	Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nature Physics, 2006, 2, 388-392.	16.7	263
176	Elastic band gaps for surface modes in an ultrasonic lithium niobate phononic crystal. , 2006, 6182, 234.		10
177	Surface acoustic wave trapping in a periodic array of mechanical resonators. Applied Physics Letters, 2006, 89, 083515.	3.3	60
178	Development of high frequency bulk acoustic wave resonator using thinned single-crystal Lithium Niobate., 2006,,.		1
179	6K-2 Interface Acoustic Wave Devices Made By Indirect Bonding of Lithium Niobate on Silicon. , 2006, , .		3
180	6A-4 3D Charge Distributions Along Edges and Corners of Electrodes in SAW Transducers. , 2006, , .		1

#	Article	IF	Citations
181	Theoretical analysis of damping effects of guided elastic waves at solidâ·fluid interfaces. Journal of Applied Physics, 2006, 99, 054907.	2.5	18
182	6E-5 High Frequency Surface Waves Scattered in Microstructured Phononic Crystals., 2006,,.		1
183	4G-2 Acoustic Wave Band Gaps in Triangular and Honeycomb Lattice 2D Ultrasonic Crystals. , 2006, , .		0
184	Three-dimensional modelling of micromachined-ultrasonic-transducer arrays operating in water. Ultrasonics, 2005, 43, 457-465.	3.9	20
185	Acoustic channel drop tunneling in a phononic crystal. Applied Physics Letters, 2005, 87, 261912.	3.3	93
186	Periodic finite element/boundary element modeling of capacitive micromachined ultrasonic transducers. Journal of Applied Physics, 2005, 97, 034901.	2.5	30
187	Equality of the energy and group velocities of bulk acoustic waves in piezoelectric media. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 1869-1871.	3.0	10
188	Simulation of transverse effects in FBAR devices. , 2005, , .		2
189	Experimental study of guiding and filtering of acoustic waves in a two dimensional ultrasonic crystal. Zeitschrift Fur Kristallographie - Crystalline Materials, 2005, 220, 836-840.	0.8	15
190	Interaction of waveguide and localized modes in a phononic crystal. Europhysics Letters, 2005, 71, 570-575.	2.0	47
191	Full band gap for surface acoustic waves in a piezoelectric phononic crystal. Physical Review E, 2005, 71, 036607.	2.1	208
192	Compression of attosecond harmonic pulses by extreme-ultraviolet chirped mirrors. Optics Letters, 2005, 30, 1554.	3.3	73
193	Phononic band-gap guidance of acoustic modes in photonic crystal fibers. Physical Review B, 2005, 71, .	3.2	80
194	Simulations of surface acoustic wave devices built on stratified media using a mixed finite element/boundary integral formulation. Journal of Applied Physics, 2004, 96, 7731-7741.	2.5	59
195	Guided elastic waves along a rod defect of a two-dimensional phononic crystal. Physical Review E, 2004, 69, 067601.	2.1	67
196	Imaginary branches of surface acoustic wave slowness curves. Journal of Applied Physics, 2004, 96, 6895-6902.	2.5	4
197	A P-matrix based model for SAW grating waveguides taking into account modes conversion at the reflection. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 1690-1696.	3.0	21
198	Fast FEM/BEM simulation of SAW devices via asymptotic waveform evaluation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 359-363.	3.0	18

#	Article	IF	Citations
199	Dyadic Green's functions of a laminar plate. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 1157-1164.	3.0	8
200	Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Applied Physics Letters, 2004, 84, 4400-4402.	3.3	423
201	Fast FEM/BEM Simulation of SAW Devices Via Asymptotic Waveform Evaluation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 359-363.	3.0	0
202	Scattering matrix method for modeling acoustic waves in piezoelectric, fluid, and metallic multilayers. Journal of Applied Physics, 2003, 94, 6923-6931.	2.5	70
203	Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal. Physical Review B, 2003, 68, .	3.2	269
204	General solution of the coupled-wave equations of acousto-optics. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2003, 20, 2307.	1.5	10
205	Interface acoustic waves properties in some common crystal cuts. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50, 1363-1370.	3.0	12
206	Least action principle for the estimation of the slowness and the attenuation of pseudo surface acoustic waves. Journal of Applied Physics, 2003, 93, 10084-10088.	2.5	6
207	Coupling characteristics of localized phonons in photonic crystal fibers. Journal of Applied Physics, 2003, 94, 7944.	2.5	27
208	Slowness curves and characteristics of surface acoustic waves propagating obliquely in periodic finite-thickness electrode gratings. Journal of Applied Physics, 2003, 94, 1235-1242.	2.5	13
209	Finite-element analysis of periodic piezoelectric transducers. Journal of Applied Physics, 2003, 93, 702-711.	2.5	47
210	Out-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials. Physical Review E, 2003, 67, 065602.	2.1	56
211	Stable scattering-matrix method for surface acoustic waves in piezoelectric multilayers. Applied Physics Letters, 2002, 80, 2544-2546.	3.3	77
212	A full 3D plane-wave-expansion model for 1-3 piezoelectric composite structures. Journal of the Acoustical Society of America, 2002, 112, 943-952.	1.1	127
213	Noise analysis of the measurement of group delay in Fourier white-light interferometric cross correlation. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 1001.	2.1	8
214	Volume index gratings in the intermediate and form-birefringence regimes. Applied Optics, 2002, 41, 6751.	2.1	1
215	Guided elastic waves in GaN-on-sapphire. Electronics Letters, 2001, 37, 1053.	1.0	14
216	Generally polarized acoustic waves trapped by high aspect ratio electrode gratings at the surface of a piezoelectric material. Journal of Applied Physics, 2001, 90, 2492-2497.	2.5	28

#	Article	IF	CITATIONS
217	<title>Incoherent multiplex optical correlator for pattern recognition</title> ., 2000, , .		O
218	Arbitrary dispersion control of ultrashort optical pulses with acoustic waves. Journal of the Optical Society of America B: Optical Physics, 2000, 17, 138.	2.1	103
219	Liquid-crystal Hartmann wave-front scanner. Applied Optics, 2000, 39, 3838.	2.1	19
220	Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: $\hat{a} \in f$ pulse compression and shaping. Optics Letters, 2000, 25, 575.	3.3	502
221	High-speed photorefractive joint transform correlator using nonlinear filters. Journal of Optics, 1, 283-285.	1.5	6
222	Input image spectral density estimation for real-time adaption of correlation filters. Optical Engineering, 1999, 38, 672.	1.0	4
223	Measurement of the sensitivity of heterodyne detection to aberrations using a programmable liquid-crystal modulator. Optics Communications, 1999, 160, 61-65.	2.1	6
224	Liquid-crystal active lens: application to image resolution enhancement. Optics Communications, 1999, 163, 72-78.	2.1	17
225	Superluminal asymptotic tunneling times through one-dimensional photonic bandgaps in quarter-wave-stack dielectric mirrors. Journal of the Optical Society of America B: Optical Physics, 1999, 16, 194.	2.1	64
226	Hartmann wave-front scanner. Optics Letters, 1999, 24, 1796.	3.3	23
227	Applications of a liquid crystal television used as an arbitrary quasi-phase modulator., 1999, 10296, 83.		0
228	Wide field of view coherent detection., 1999, 3707, 461.		0
229	Twisted-nematic liquid-crystal pixelated active lens. Optics Communications, 1998, 153, 134-152.	2.1	72
230	<code> </code>		1
231	High-speed photorefractive joint transform correlator using optimized nonlinear filters. , 1998, 3490, 26.		0
232	<title>High-speed compact photorefractive joint transform correlator</title> ., 1998, 3466, 136.		2
233	Bayesian target location in images. Optical Engineering, 1997, 36, 2649.	1.0	4
234	Optical architectures for programmable filtering and correlation of microwave signals. IEEE Transactions on Microwave Theory and Techniques, 1997, 45, 1467-1472.	4.6	20

#	Article	IF	Citations
235	Negative group velocities in metal-film optical waveguides. Optics Communications, 1997, 137, 41-45.	2.1	51
236	Diffraction analysis of pixelated incoherent shadow casting. Optics Communications, 1997, 138, 394-402.	2.1	6
237	<title>Optical image processing with the liquid crystal active lens</title> ., 1997, , .		1
238	Convolution-kernel-based optimal trade-off filters for optical pattern recognition. Applied Optics, 1996, 35, 3874.	2.1	2
239	Implementation of arbitrary real-valued correlation filters for the shadow-casting incoherent correlator. Applied Optics, 1996, 35, 5267.	2.1	8
240	Optical architecture for programmable filtering of microwave signals. Optics Letters, 1996, 21, 803.	3.3	7
241	<title>Input image spectral density estimation for real-time adaption of correlation filters for optical pattern recognition</title> ., 1996, , .		0
242	<title>Optical architectures for programmable filtering of microwave signals</title> ., 1996, 2845, 276.		1
243	<title>Optical implementation of optimal trade-off bipolar filters for the shadow-casting incoherent correlator</title> ., 1995, 2565, 85.		0
244	<title>Small target tracking on image sequence using nonlinear optimal filtering</title> ., 1995, 2561, 299.		2
245	Influence of nonoverlapping noise on regularized linear filters for pattern recognition. Optics Letters, 1995, 20, 2237.	3.3	22
246	Spatial fluctuations of an optical field modulated with spatial light modulators and noisy input signals. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1995, 12, 1338.	1.5	3
247	Basic properties of nonlinear global filtering techniques and optimal discriminant solutions. Applied Optics, 1995, 34, 3915.	2.1	16
248	Nonlinear joint-transform correlation: an optimal solution for adaptive image discrimination and input noise robustness. Optics Letters, 1994, 19, 405.	3.3	77
249	Multicriteria characterization of coding domains with optimal Fourier spatial light modulator filters. Applied Optics, 1994, 33, 4465.	2.1	49
250	<title>Characterization of SLM coding domains for implementation of optimal trade-off filters</title> ., 1994, 2297, 60.		0
251	Amplitude and phase coding measurements of a liquid crystal television. Optics Communications, 1993, 103, 33-38.	2.1	29
252	3d piezoelectric surface green~s function., 0,,.		3

#	Article	IF	CITATIONS
253	AlN and GaN layers deposited on sapphire or silicon substrates: theory and experiment., 0,,.		5
254	Characteristics of surface acoustic waves propagating obliquely in periodic electrode gratings. , 0, , .		2
255	Periodic arrays of transducers built using sand blasting and ultrasound micromachining techniques for the fabrication of piezocomposite materials. , 0, , .		4
256	Experimental observation of higher order surface acoustic modes in high aspect ratio electroplated nickel electrodes on Y+128 lithium niobate. , 0, , .		0
257	Stabilization of the simulation of saw devices on stratified structures: application to transverse plate mode resonators., 0,,.		1
258	Surface acoustic waves propagating on piezoelectric substrates under periodic arrays with large electrode thickness. , 0, , .		3
259	A plane-wave-expansion approach for modelling acoustic propagation in 2D and 3D piezoelectric periodic structures. , 0, , .		1
260	Characterization and prediction of transverse plate resonators built using mixed strip and groove gratings. , 0 , , .		7
261	Oriented lithium niobate layers transferred on 4" $[100]$ silicon wafer for RF SAW devices. , 0, , .		15
262	Numerical simulation and comparison of membrane and solidly mounted FBAR's., 0,,.		9
263	A FEA/BEM approach to simulate complex electrode structures devoted to guided elastic wave periodic transducers. , 0, , .		22
264	A least action principle for the location of PSAW's and a minimum bound on their attenuation. , 0, , .		1
265	Simulation of cMUT radiating in water using a mixed finite element/boundary element approach. , 0, , .		8
266	Electroacoustic interaction between SAW and vibration modes of high-aspect-ratio electrodes built using LIGA-UV techniques on singly rotated lithium niobate wafers. , 0, , .		0
267	Design of coupled resonator filters using admittance and scattering matrices. , 0, , .		5
268	Dyadic Green's function of a laminar plate., 0,,.		0
269	A novel surface wave transducer based on periodically poled piezoelectric domain. , 0, , .		12
270	Theoretical analysis of damping effects of SAW at soud/fluid interfaces. , 0, , .		0

#	Article	IF	CITATIONS
271	Dyadic Green's function of a laminar plate. , 0, , .		0
272	Sensitivity of interface acoustic waves to the nature of the interface. , 0, , .		3
273	A 3-D mixed finite-element/boundary-element model for the simulation of periodic ultrasound transducers radiating in layered media., 0,,.		5
274	Imaginary branches of SAW slowness curves. , 0, , .		2
275	Experimental study of band gaps and defect modes in a two-dimensional ultrasonic crystal. , 0, , .		3
276	Non periodic acoustic devices radiating in semi-infinite solids simulated by a combination of finite element analysis and a boundary element method. , 0 , , .		4
277	Investigation of spurious resonances in thin film bulk acoustic wave resonators. , 0, , .		5
278	Full band gaps for surface acoustic waves in piezoelectric phononic crystals. , 0, , .		3
279	Guiding and filtering acoustic waves in a two-dimensional phononic crystal. , 0, , .		3
280	Fast FEM/BEM computation of SAW harmonic admittance and slowness curves. , 0, , .		4
281	Hypersonic band gaps in two-dimensional piezoelectric phononic crystal slabs. , 0, , .		0
282	Low temperature bonding of interface acoustic waves resonators on silicon wafers. , 0, , .		2
283	Silicon phononic crystal for surface acoustic waves. , 0, , .		0
284	Design of asynchronous STW resonators for filters and high stability source applications. , 0, , .		2
285	Optimisation and improved convergence of coupled finite element/boundary element analyses. , 0, , .		3
286	Channel drop process of elastic wave in a two dimensional phononic crystal., 0,,.		1
287	A time domain approach for the analysis of periodic structures using finite element analysis. , 0, , .		0
288	Theoretical calculations of Boundary Waves using effective permittivity and harmonic admittance approaches on various combination of materials. , 0 , , .		0