List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1883224/publications.pdf Version: 2024-02-01

CARDIÃ#L LE RINKEL

#	Article	IF	CITATIONS
1	Histopathology of Cerebral Microinfarcts and Microbleeds in Spontaneous Intracerebral Hemorrhage. Translational Stroke Research, 2023, 14, 174-184.	2.3	6
2	Preventive screening for intracranial aneurysms. International Journal of Stroke, 2022, 17, 30-36.	2.9	19
3	Rescue therapy for vasospasm following aneurysmal subarachnoid hemorrhage: a propensity score–matched analysis with machine learning. Journal of Neurosurgery, 2022, 136, 134-147.	0.9	5
4	Deferred Consent in an Acute Stroke Trial from a Patient, Proxy, and Physician Perspective: A Cross-Sectional Survey. Neurocritical Care, 2022, 36, 621-629.	1.2	4
5	Does the Internal Carotid Artery Attenuate Bloodâ€Flow Pulsatility in Small Vessel Disease? A 7ÂT <scp>4D</scp> â€Flow <scp>MRI</scp> Study. Journal of Magnetic Resonance Imaging, 2022, 56, 527-535.	1.9	10
6	Sex Difference and Rupture Rate of Intracranial Aneurysms: An Individual Patient Data Meta-Analysis. Stroke, 2022, 53, 362-369.	1.0	22
7	Number of Affected Relatives, Age, Smoking, and Hypertension Prediction Score for Intracranial Aneurysms in Persons With a Family History for Subarachnoid Hemorrhage. Stroke, 2022, 53, 1645-1650.	1.0	7
8	Rebleeding After Aneurysmal Subarachnoid Hemorrhage in Two Centers Using Different Blood Pressure Management Strategies. Frontiers in Neurology, 2022, 13, 836268.	1.1	7
9	Blood Pressure Management After Intracerebral and Subarachnoid Hemorrhage: The Knowns and Known Unknowns. Stroke, 2022, 53, 1065-1073.	1.0	24
10	Trigger Factors for Spontaneous Intracerebral Hemorrhage: A Case-Crossover Study. Stroke, 2022, 53, 1692-1699.	1.0	6
11	Ultra-early tranexamic acid after subarachnoid haemorrhage (ULTRA): a randomised controlled trial. Lancet, The, 2021, 397, 112-118.	6.3	95
12	Management decisions on unruptured intracranial aneurysms before and after implementation of the PHASES score. Journal of the Neurological Sciences, 2021, 422, 117319.	0.3	5
13	Secondary Hematoma Evacuation and Outcome After Initial Conservative Approach for Patients with Cerebellar Hematoma Larger than 3Âcm. Neurocritical Care, 2021, 35, 680-686.	1.2	3
14	Risk of Rupture After Intracranial Aneurysm Growth. JAMA Neurology, 2021, 78, 1228.	4.5	37
15	Computed Tomography Angiography Spot Sign, Hematoma Expansion, and Functional Outcome in Spontaneous Cerebellar Intracerebral Hemorrhage. Stroke, 2021, 52, 2902-2909.	1.0	6
16	Pulsatility Attenuation along the Carotid Siphon in Pseudoxanthoma Elasticum. American Journal of Neuroradiology, 2021, 42, 2030-2033.	1.2	1
17	Difference in Rupture Risk Between Familial and Sporadic Intracranial Aneurysms: An Individual Patient Data Meta-analysis. Neurology, 2021, 97, 10.1212/WNL.000000000012885.	1.5	5
18	Apixaban versus no anticoagulation after anticoagulation-associated intracerebral haemorrhage in patients with atrial fibrillation in the Netherlands (APACHE-AF): a randomised, open-label, phase 2 trial. Lancet Neurology, The, 2021, 20, 907-916.	4.9	44

#	Article	IF	CITATIONS
19	Exome-chip association analysis of intracranial aneurysms. Neurology, 2020, 94, e481-e488.	1.5	5
20	Complement C5 Contributes to Brain Injury After Subarachnoid Hemorrhage. Translational Stroke Research, 2020, 11, 678-688.	2.3	24
21	RNA-Sequencing Highlights Inflammation and Impaired Integrity of the Vascular Wall in Brain Arteriovenous Malformations. Stroke, 2020, 51, 268-274.	1.0	22
22	Genome-wide association study of intracranial aneurysms identifies 17 risk loci and genetic overlap with clinical risk factors. Nature Genetics, 2020, 52, 1303-1313.	9.4	163
23	CompLement C5 Antibodies for decreasing brain injury after aneurysmal Subarachnoid Haemorrhage (CLASH): study protocol for a randomised controlled phase II clinical trial. Trials, 2020, 21, 969.	0.7	7
24	Effects of dobutamine and phenylephrine on cerebral perfusion in patients undergoing cerebral bypass surgery: a randomised crossover trial. British Journal of Anaesthesia, 2020, 125, 539-547.	1.5	6
25	Heritability of territory of ruptured and unruptured intracranial aneurysms in families. PLoS ONE, 2020, 15, e0236714.	1.1	3
26	Location-specific risk factors for intracerebral hemorrhage. Neurology, 2020, 95, e1807-e1818.	1.5	41
27	Prediction of Outcome Using Quantified Blood Volume in Aneurysmal SAH. American Journal of Neuroradiology, 2020, 41, 1015-1021.	1.2	10
28	The course of cerebrospinal fluid parametersÂâ‰Â20Âdays after aneurysmal subarachnoid hemorrhage. Journal of the Neurological Sciences, 2020, 415, 116899.	0.3	6
29	Update of the ULtra-early TRranexamic Acid after Subarachnoid Hemorrhage (ULTRA) trial: statistical analysis plan. Trials, 2020, 21, 199.	0.7	8
30	Co-prevalence of extracranial carotid aneurysms differs between European intracranial aneurysm cohorts. PLoS ONE, 2020, 15, e0228041.	1.1	4
31	Worldwide Incidence of Aneurysmal Subarachnoid Hemorrhage According to Region, Time Period, Blood Pressure, and Smoking Prevalence in the Population. JAMA Neurology, 2019, 76, 588.	4.5	452
32	Gadolinium Enhancement of the Aneurysm Wall in Unruptured Intracranial Aneurysms Is Associated with an Increased Risk of Aneurysm Instability: A Follow-Up Study. American Journal of Neuroradiology, 2019, 40, 1112-1116.	1.2	57
33	Common Data Elements for Radiological Imaging of Patients with Subarachnoid Hemorrhage: Proposal of a Multidisciplinary Research Group. Neurocritical Care, 2019, 30, 60-78.	1.2	17
34	Definition and Prioritization of Data Elements for Cohort Studies and Clinical Trials on Patients with Unruptured Intracranial Aneurysms: Proposal of a Multidisciplinary Research Group. Neurocritical Care, 2019, 30, 87-101.	1.2	22
35	Histological Differences of the Vascular Wall Between Sites With High and Low Prevalence of Intracranial Aneurysm. Journal of Neuropathology and Experimental Neurology, 2019, 78, 648-654.	0.9	2
36	Common Data Elements for Unruptured Intracranial Aneurysms and Subarachnoid Hemorrhage Clinical Research: A National Institute for Neurological Disorders and Stroke and National Library of Medicine Project. Neurocritical Care, 2019, 30, 4-19.	1.2	49

#	Article	IF	CITATIONS
37	Comparison of Rupture Risk of Intracranial Aneurysms Between Familial and Sporadic Patients. Stroke, 2019, 50, 1380-1383.	1.0	11
38	Procedural Clinical Complications, Case-Fatality Risks, and Risk Factors in Endovascular and Neurosurgical Treatment of Unruptured Intracranial Aneurysms. JAMA Neurology, 2019, 76, 282.	4.5	134
39	Concordance in Aneurysm Size at Time of Rupture in Familial Intracranial Aneurysms. Stroke, 2019, 50, 504-506.	1.0	3
40	Management of patients with unruptured intracranial aneurysms. Current Opinion in Neurology, 2019, 32, 49-53.	1.8	17
41	Stress in Patients With (Un)ruptured Intracranial Aneurysms vs Population-Based Controls. Neurosurgery, 2019, 84, 1065-1071.	0.6	11
42	External Validation of the ELAPSS Score for Prediction of Unruptured Intracranial Aneurysm Growth Risk. Journal of Stroke, 2019, 21, 340-346.	1.4	12
43	Quantification of Intracranial Aneurysm Volume Pulsation with 7T MRI. American Journal of Neuroradiology, 2018, 39, 713-719.	1.2	8
44	Association of Quantified Location-Specific Blood Volumes with Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage. American Journal of Neuroradiology, 2018, 39, 1059-1064.	1.2	15
45	Predicting the presence of macrovascular causes in non-traumatic intracerebral haemorrhage: the DIAGRAM prediction score. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 674-679.	0.9	46
46	Determinants of Gadolinium-Enhancement of the Aneurysm Wall in Unruptured Intracranial Aneurysms. Neurosurgery, 2018, 83, 719-725.	0.6	38
47	Intracranial Aneurysm–Associated Single-Nucleotide Polymorphisms Alter Regulatory DNA in the Human Circle of Willis. Stroke, 2018, 49, 447-453.	1.0	16
48	Development and validation of outcome prediction models for aneurysmal subarachnoid haemorrhage: the SAHIT multinational cohort study. BMJ: British Medical Journal, 2018, 360, j5745.	2.4	166
49	Induced Hypertension for Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage. Stroke, 2018, 49, 76-83.	1.0	140
50	A coil in the hair—a case report of percutaneous coil migration. Acta Neurochirurgica, 2018, 160, 2397-2399.	0.9	1
51	Risk Factors for Intracranial Aneurysm Rupture: A Systematic Review. Neurosurgery, 2018, 82, 431-440.	0.6	88
52	Exploratory study of the course of posttraumatic stress disorder after aneurysmal subarachnoid hemorrhage. General Hospital Psychiatry, 2018, 53, 114-118.	1.2	3
53	Heritability of circle of Willis variations in families with intracranial aneurysms. PLoS ONE, 2018, 13, e0191974.	1.1	9
54	Restrictions and satisfaction with participation in patients who are ADL-independent after an aneurysmal subarachnoid hemorrhage. Topics in Stroke Rehabilitation, 2017, 24, 134-141.	1.0	19

#	Article	IF	CITATIONS
55	Meta-analysis of timing of endovascular aneurysm treatment in subarachnoid haemorrhage: inconsistent results of early treatment within 1 day. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 241-248.	0.9	31
56	The initial time-course of headache in patients with spontaneous subarachnoid hemorrhage. Journal of the Neurological Sciences, 2017, 379, 55-57.	0.3	3
57	ELAPSS score for prediction of risk of growth of unruptured intracranial aneurysms. Neurology, 2017, 88, 1600-1606.	1.5	164
58	Subjective hearing impairment after subarachnoid haemorrhage: Prevalence and risk factors. Journal of the Neurological Sciences, 2017, 372, 184-186.	0.3	8
59	Magnetic Resonance Imaging and Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage. Stroke, 2017, 48, 239-245.	1.0	12
60	Comparative Ultrastructural and Stereological Analyses of Unruptured and Ruptured Saccular Intracranial Aneurysms. Journal of Neuropathology and Experimental Neurology, 2017, 76, 908-916.	0.9	12
61	Recurrent Bleeding After Perimesencephalic Hemorrhage. World Neurosurgery, 2017, 108, 990.e17-990.e21.	0.7	1
62	Circulating microRNAs in patients with intracranial aneurysms. PLoS ONE, 2017, 12, e0176558.	1.1	26
63	RNA Sequencing Analysis of Intracranial Aneurysm Walls Reveals Involvement of Lysosomes and Immunoglobulins in Rupture. Stroke, 2016, 47, 1286-1293.	1.0	55
64	Glial cell response after aneurysmal subarachnoid hemorrhage — Functional consequences and clinical implications. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 492-505.	1.8	38
65	Association of Automatically Quantified Total Blood Volume after Aneurysmal Subarachnoid Hemorrhage with Delayed Cerebral Ischemia. American Journal of Neuroradiology, 2016, 37, 1588-1593.	1.2	19
66	Spreading depolarization-modulating drugs and delayed cerebral ischemia after subarachnoid hemorrhage: A hypothesis-generating retrospective clinical study. Journal of the Neurological Sciences, 2016, 366, 224-228.	0.3	1
67	Shared Genetic Risk Factors of Intracranial, Abdominal, and Thoracic Aneurysms. Journal of the American Heart Association, 2016, 5, .	1.6	45
68	Sex-Related Differences in Outcome in Patients with Aneurysmal Subarachnoid Hemorrhage. Journal of Stroke and Cerebrovascular Diseases, 2016, 25, 2067-2070.	0.7	12
69	Prognosis of cerebral cavernomas: on to treatment decisions. Lancet Neurology, The, 2016, 15, 129-130.	4.9	4
70	Time trends in causes of death after aneurysmal subarachnoid hemorrhage. Neurology, 2016, 86, 59-63.	1.5	77
71	Patient- and Aneurysm-Specific Risk Factors for Intracranial Aneurysm Growth. Stroke, 2016, 47, 951-957.	1.0	166
72	Susceptibility loci for sporadic brain arteriovenous malformation; a replication study and meta-analysis. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 693-696.	0.9	13

#	Article	IF	CITATIONS
73	Relationship Between Cardiac Dysfunction and Cerebral Perfusion in Patients with Aneurysmal Subarachnoid Hemorrhage. Neurocritical Care, 2016, 24, 202-206.	1.2	27
74	Preventive Antibiotics and Delayed Cerebral Ischaemia in Patients with Aneurysmal Subarachnoid Haemorrhage Admitted to the Intensive Care Unit. Neurocritical Care, 2016, 24, 122-127.	1.2	0
75	Difference in Aneurysm Characteristics between Patients with Familial and Sporadic Aneurysmal Subarachnoid Haemorrhage. PLoS ONE, 2016, 11, e0154281.	1.1	9
76	Apixaban versus Antiplatelet drugs or no antithrombotic drugs after anticoagulation-associated intraCerebral HaEmorrhage in patients with Atrial Fibrillation (APACHE-AF): study protocol for a randomised controlled trial. Trials, 2015, 16, 393.	0.7	59
77	Nosocomial Infections after Aneurysmal Subarachnoid Hemorrhage: Time Course and Causative Pathogens. International Journal of Stroke, 2015, 10, 763-766.	2.9	35
78	Effect of magnesium treatment and glucose levels on delayed cerebral ischemia in patients with subarachnoid hemorrhage: a substudy of the Magnesium in Aneurysmal Subarachnoid Haemorrhage trial (MASH-II). International Journal of Stroke, 2015, 10, 108-112.	2.9	15
79	Lessons Learned from Whole Exome Sequencing in Multiplex Families Affected by a Complex Genetic Disorder, Intracranial Aneurysm. PLoS ONE, 2015, 10, e0121104.	1.1	32
80	Whole Blood Gene Expression Profiles of Patients with a Past Aneurysmal Subarachnoid Hemorrhage. PLoS ONE, 2015, 10, e0139352.	1.1	11
81	Effect of Endothelin Receptor Antagonists on Clinically Relevant Outcomes after Experimental Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1085-1089.	2.4	25
82	Sex-Related Clustering of Intracranial Aneurysms Within Families. Stroke, 2015, 46, 1107-1109.	1.0	6
83	Early Magnesium Treatment After Aneurysmal Subarachnoid Hemorrhage. Stroke, 2015, 46, 3190-3193.	1.0	27
84	Diagnostic yield and accuracy of CT angiography, MR angiography, and digital subtraction angiography for detection of macrovascular causes of intracerebral haemorrhage: prospective, multicentre cohort study. BMJ, The, 2015, 351, h5762-h5762.	3.0	71
85	Hemostasis and Fibrinolysis in Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage: A Systematic Review. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 724-733.	2.4	55
86	PHASES Score for Prediction of Intracranial Aneurysm Growth. Stroke, 2015, 46, 1221-1226.	1.0	132
87	CT perfusion during delayed cerebral ischemia after subarachnoid hemorrhage: distinction between reversible ischemia and ischemia progressing to infarction. Neuroradiology, 2015, 57, 897-902.	1.1	18
88	Time-dependent test characteristics of neck stiffness in patients suspected of nontraumatic subarachnoid haemorrhage. Journal of the Neurological Sciences, 2015, 355, 186-188.	0.3	4
89	CT within 6 hours of headache onset to rule out subarachnoid hemorrhage in nonacademic hospitals. Neurology, 2015, 84, 1927-1932.	1.5	64
90	Long-term risk of aneurysmal subarachnoid hemorrhage after a negative aneurysm screen. Neurology, 2015, 84, 912-917.	1.5	7

6

#	Article	IF	CITATIONS
91	Evaluation of genetic risk loci for intracranial aneurysms in sporadic arteriovenous malformations of the brain. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 524-529.	0.9	23
92	Effects of Induced Hypertension on Cerebral Perfusion in Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage. Stroke, 2015, 46, 3277-3281.	1.0	73
93	Cerebral aneurysm guidelines—more guidance needed. Nature Reviews Neurology, 2015, 11, 490-491.	4.9	18
94	Recovery to Preinterventional Functioning, Return-to-Work, and Life Satisfaction After Treatment of Unruptured Aneurysms. Stroke, 2015, 46, 1607-1612.	1.0	18
95	Clinical, Radiological, and Flow-Related Risk Factors for Growth of Untreated, Unruptured Intracranial Aneurysms. Stroke, 2015, 46, 42-48.	1.0	84
96	Genome-Wide Association Study of Intracranial Aneurysm Identifies a New Association on Chromosome 7. Stroke, 2014, 45, 3194-3199.	1.0	52
97	CT Perfusion and Delayed Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 200-207.	2.4	99
98	Natural History and Outcome After Treatment of Unruptured Intradural Fusiform Aneurysms. Stroke, 2014, 45, 3251-3256.	1.0	44
99	High Risk Population Isolate Reveals Low Frequency Variants Predisposing to Intracranial Aneurysms. PLoS Genetics, 2014, 10, e1004134.	1.5	55
100	Genetic risk load according to the site of intracranial aneurysms. Neurology, 2014, 83, 34-39.	1.5	28
101	Treatment of cerebral cavernous malformations: a systematic review and meta-regression analysis. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 1319-1323.	0.9	53
102	Prevalence of Brain Arteriovenous Malformations in First-Degree Relatives of Patients With a Brain Arteriovenous Malformation. Stroke, 2014, 45, 3231-3235.	1.0	20
103	Long-term, serial screening for intracranial aneurysms in individuals with a family history of aneurysmal subarachnoid haemorrhage: a cohort study. Lancet Neurology, The, 2014, 13, 385-392.	4.9	75
104	Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurology, The, 2014, 13, 59-66.	4.9	980
105	CT angiography spot sign in intracerebral hemorrhage predicts active bleeding during surgery. Neurology, 2014, 83, 883-889.	1.5	55
106	Aneurysm Treatment <24 Versus 24–72Âh After Subarachnoid Hemorrhage. Neurocritical Care, 2014, 21, 4-13.	1.2	42
107	Unruptured intracranial aneurysms: why we must not perpetuate the impasse for another 25 years – Authors' reply. Lancet Neurology, The, 2014, 13, 538.	4.9	4
108	Polymorphisms in ACVRL1 and Endoglin Genes are Not Associated with Sporadic and HHT-Related Brain AVMs in Dutch Patients. Translational Stroke Research, 2013, 4, 375-378.	2.3	17

GABRIëL J E RINKEL

#	Article	IF	CITATIONS
109	European Stroke Organization Guidelines for the Management of Intracranial Aneurysms and Subarachnoid Haemorrhage. Cerebrovascular Diseases, 2013, 35, 93-112.	0.8	884
110	External Validation of the Secondary Intracerebral Hemorrhage Score in The Netherlands. Stroke, 2013, 44, 2904-2906.	1.0	30
111	Response to Letter Regarding Article, "Time-Dependent Test Characteristics of Head CT in Patients Suspected of Nontraumatic Subarachnoid Hemorrhage― Stroke, 2012, 43, .	1.0	0
112	Timing of Aneurysm Treatment After Subarachnoid Hemorrhage. Stroke, 2012, 43, 2126-2129.	1.0	64
113	Long-term outcomes of patients with aneurysmal subarachnoid haemorrhage. Lancet Neurology, The, 2011, 10, 349-356.	4.9	384
114	Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurology, The, 2009, 8, 635-642.	4.9	1,079
115	Prevention and treatment of medical and neurological complications in patients with aneurysmal subarachnoid haemorrhage. Practical Neurology, 2009, 9, 195-209.	0.5	14
116	Medical Management of Patients with Aneurysmal Subarachnoid Haemorrhage. International Journal of Stroke, 2008, 3, 193-204.	2.9	21
117	Configuration of intracranial arteries and development of aneurysms. Neurology, 2008, 70, 700-705.	1.5	72
118	Endovascular Treatment of Ruptured Intracranial Aneurysms with Detachable Coils: Long-term Clinical and Serial Angiographic Results. Radiology, 2003, 227, 720-724.	3.6	182
119	Treatment of Intracranial Aneurysms by Embolization with Coils. Stroke, 1999, 30, 470-476.	1.0	470
120	Mortality and Morbidity of Surgery for Unruptured Intracranial Aneurysms. Stroke, 1998, 29, 1531-1538.	1.0	517