Anthony J Roberts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1883118/publications.pdf Version: 2024-02-01

ANTHONY | POREDTS

#	Article	IF	CITATIONS
1	Largeâ€scale simulation of shallow water waves via computation only on small staggered patches. International Journal for Numerical Methods in Fluids, 2021, 93, 953-977.	1.6	5
2	A toolbox of equation-free functions in Matlab/Octave for efficient system level simulation. Numerical Algorithms, 2021, 87, 1729-1748.	1.9	8
3	Rigorous modelling of nonlocal interactions determines a macroscale advection-diffusion PDE. MATRIX Book Series, 2021, , 423-437.	0.2	Ο
4	An Equation Free Algorithm Accurately Simulates Macroscale Shocks Arising From Heterogeneous Microscale Systems. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2021, 6, 8-15.	2.2	2
5	Nonlinear emergent macroscale PDEs, with error bound, for nonlinear microscale systems. SN Applied Sciences, 2021, 3, 1.	2.9	1
6	Equation-free patch scheme for efficient computational homogenisation via self-adjoint coupling. Numerische Mathematik, 2021, 149, 229-272.	1.9	4
7	Linking Machine Learning with Multiscale Numerics: Data-Driven Discovery of Homogenized Equations. Jom, 2020, 72, 4444-4457.	1.9	20
8	Normal forms and invariant manifolds for nonlinear, non-autonomous PDEs, viewed as ODEs in infinite dimensions. Journal of Differential Equations, 2019, 267, 7263-7312.	2.2	2
9	LYAPUNOV EXPONENTS OF THE KURAMOTO–SIVASHINSKY PDE. ANZIAM Journal, 2019, 61, 270-285.	0.2	13
10	COUPLE MICROSCALE PERIODIC PATCHES TO SIMULATE MACROSCALE EMERGENT DYNAMICS. ANZIAM Journal, 2018, 59, 313-334.	0.2	3
11	Smooth subgrid fields underpin rigorous closure in spatial discretisation of reaction–advection–diffusion PDEs. Applied Numerical Mathematics, 2018, 132, 91-110.	2.1	2
12	Boundary conditions for macroscale waves in an elastic system with microscale heterogeneity. IMA Journal of Applied Mathematics, 2018, 83, 347-379.	1.6	3
13	Resolution of subgrid microscale interactions enhances the discretisation of nonautonomous partial differential equations. Applied Mathematics and Computation, 2017, 304, 164-179.	2.2	5
14	Good coupling for the multiscale patch scheme on systems with microscale heterogeneity. Journal of Computational Physics, 2017, 337, 154-174.	3.8	14
15	Slowly varying, macroscale models emerge from microscale dynamics over multiscale domains. IMA Journal of Applied Mathematics, 2017, 82, 971-1012.	1.6	5
16	Accuracy of Patch Dynamics with Mesoscale Temporal Coupling for Efficient Massively Parallel Simulations. SIAM Journal of Scientific Computing, 2016, 38, C335-C371.	2.8	4
17	Surface deformation and shear flow in ligand mediated cell adhesion. Journal of Mathematical Biology, 2016, 73, 1035-1052.	1.9	8
18	Modelling suspended sediment in environmental turbulent fluids. Journal of Engineering Mathematics, 2016, 98, 187-204.	1.2	4

#	Article	IF	CITATIONS
19	Multiscale modelling couples patches of non-linear wave-like simulations. IMA Journal of Applied Mathematics, 2016, 81, 228-254.	1.6	11
20	Macroscale, slowly varying, models emerge from the microscale dynamics: Fig. 1 IMA Journal of Applied Mathematics, 2015, 80, 1492-1518.	1.6	13
21	Numerical integration of ordinary differential equations with rapidly oscillatory factors. Journal of Computational and Applied Mathematics, 2015, 282, 54-70.	2.0	2
22	Diffusion Approximation for Self-Similarity of Stochastic Advection in Burgers' Equation. Communications in Mathematical Physics, 2015, 333, 1287-1316.	2.2	11
23	Approximation of the random inertial manifold of singularly perturbed stochastic wave equations. Stochastics and Dynamics, 2014, 14, 1350018.	1.2	6
24	Large Deviation Principle for Singularly Perturbed Stochastic Damped Wave Equations. Stochastic Analysis and Applications, 2014, 32, 50-60.	1.5	10
25	A dynamical systems approach to simulating macroscale spatial dynamics in multiple dimensions. Journal of Engineering Mathematics, 2014, 86, 175-207.	1.2	16
26	Self-Similarity and Attraction in Stochastic Nonlinear Reaction-Diffusion Systems. SIAM Journal on Applied Dynamical Systems, 2013, 12, 450-486.	1.6	6
27	Slow manifold and averaging for slow–fast stochastic differential system. Journal of Mathematical Analysis and Applications, 2013, 398, 822-839.	1.0	31
28	Averaging approximation to singularly perturbed nonlinear stochastic wave equations. Journal of Mathematical Physics, 2012, 53, 062702.	1.1	10
29	Large deviations and approximations for slow–fast stochastic reaction–diffusion equations. Journal of Differential Equations, 2012, 253, 3501-3522.	2.2	29
30	Average and deviation for slow–fast stochastic partial differential equations. Journal of Differential Equations, 2012, 253, 1265-1286.	2.2	89
31	Macroscopic discrete modelling of stochastic reaction-diffusion equations on a periodic domain. Discrete and Continuous Dynamical Systems, 2011, 31, 253-273.	0.9	1
32	Choose inter-element coupling to preserve self-adjoint dynamics in multiscale modelling and computation. Applied Numerical Mathematics, 2010, 60, 949-973.	2.1	4
33	Model Dynamics across Multiple Length and Time Scales on a Spatial Multigrid. Multiscale Modeling and Simulation, 2009, 7, 1525-1548.	1.6	7
34	Equation-Free Computation: An Overview of Patch Dynamics. , 2009, , 216-246.		9
35	The inertial dynamics of thin film flow of non-Newtonian fluids. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 1607-1611.	2.1	3
36	Normal form transforms separate slow and fast modes in stochastic dynamical systems. Physica A: Statistical Mechanics and Its Applications, 2008, 387, 12-38.	2.6	78

#	Article	IF	CITATIONS
37	Elementary Calculus of Financial Mathematics. , 2008, , .		35
38	General Tooth Boundary Conditions for Equation Free Modeling. SIAM Journal of Scientific Computing, 2007, 29, 1495-1510.	2.8	37
39	Accurately Model the KuramotoSivashinsky Dynamics with Holistic Discretization. SIAM Journal on Applied Dynamical Systems, 2006, 5, 365-402.	1.6	5
40	An accurate and comprehensive model of thin fluid flows with inertia on curved substrates. Journal of Fluid Mechanics, 2006, 553, 33.	3.4	32
41	Resolving the Multitude of Microscale Interactions Accurately Models Stochastic Partial Differential Equations. LMS Journal of Computation and Mathematics, 2006, 9, 193-221.	0.9	15
42	Nonlinear Analysis of Rubber-Based Polymeric Materials with Thermal Relaxation Models. Numerical Heat Transfer; Part A: Applications, 2005, 47, 549-569.	2.1	16
43	Modelling nonlinear dynamics of shape-memory-alloys with approximate models of coupled thermoelasticity. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2003, 83, 93-104.	1.6	17
44	Modelling the Dynamics of Turbulent Floods. SIAM Journal on Applied Mathematics, 2003, 63, 423-458.	1.8	5
45	A holistic finite difference approach models linear dynamics consistently. Mathematics of Computation, 2002, 72, 247-263.	2.1	27
46	A lubrication model of coating flows over a curved substrate in space. Journal of Fluid Mechanics, 2002, 454, 235-261.	3.4	76
47	Phase transitions in shape memory alloys with hyperbolic heat conduction and differential-algebraic models. Computational Mechanics, 2002, 29, 16-26.	4.0	28
48	Holistic discretization ensures fidelity to Burgers' equation. Applied Numerical Mathematics, 2001, 37, 371-396.	2.1	22
49	Modeling of Sample Dynamics in Rectangular Asymmetrical Flow Field-Flow Fractionation Channels. Analytical Chemistry, 2000, 72, 4331-4345.	6.5	6
50	Advectionâ€dispersion in symmetric fieldâ€flow fractionation channels. Journal of Mathematical Chemistry, 1999, 26, 27-46.	1.5	1
51	Bow–like free surfaces under gravity. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1997, 355, 665-677.	3.4	3
52	Low-dimensional modelling of dynamics via computer algebra. Computer Physics Communications, 1997, 100, 215-230.	7.5	56
53	On the observability of finite-depth short-crested water waves. Journal of Fluid Mechanics, 1996, 322, 1-19.	3.4	16
54	Low-dimensional models of thin film fluid dynamics. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 212, 63-71.	2.1	30

#	Article	IF	CITATIONS
55	On the low-dimensional modelling of Stratonovich stochastic differential equations. Physica A: Statistical Mechanics and Its Applications, 1996, 225, 62-80.	2.6	40
56	Internal structure of extreme standing waves on deep water. Physics of Fluids, 1996, 8, 697-703.	4.0	0
57	Initial conditions for models of dynamical systems. Physica D: Nonlinear Phenomena, 1995, 85, 126-141.	2.8	42
58	Standing waves in deep water: Their stability and extreme form. Physics of Fluids A, Fluid Dynamics, 1992, 4, 259-269.	1.6	61
59	Boundary conditions for approximate differential equations. Journal of the Australian Mathematical Society Series B Applied Mathematics, 1992, 34, 54-80.	0.2	32
60	Centre manifolds of forced dynamical systems. Journal of the Australian Mathematical Society Series B Applied Mathematics, 1991, 32, 401-436.	0.2	16
61	Reflection of nonlinear deep-water waves incident onto a wedge of arbitrary angle. Journal of the Australian Mathematical Society Series B Applied Mathematics, 1990, 32, 61-96.	0.2	3
62	A description of the long-term behaviour of absorbing continuous-time Markov chains using a centre manifold. Advances in Applied Probability, 1990, 22, 111-128.	0.7	15
63	A Centre Manifold Description of Contaminant Dispersion in Channels with Varying Flow Properties. SIAM Journal on Applied Mathematics, 1990, 50, 1547-1565.	1.8	140
64	The Utility of an Invariant Manifold Description of the Evolution of a Dynamical System. SIAM Journal on Mathematical Analysis, 1989, 20, 1447-1458.	1.9	52
65	Appropriate initial conditions for asymptotic descriptions of the long term evolution of dynamical systems. Journal of the Australian Mathematical Society Series B Applied Mathematics, 1989, 31, 48-75.	0.2	58
66	A variational approach to the problem of deep-water waves forming a circular caustic. Journal of Fluid Mechanics, 1988, 194, 581.	3.4	4
67	The application of centre-manifold theory to the evolution of system which vary slowly in space. Journal of the Australian Mathematical Society Series B Applied Mathematics, 1988, 29, 480-500.	0.2	52
68	Simple examples of the derivation of amplitude equations for systems of equations possessing bifurcations. Journal of the Australian Mathematical Society Series B Applied Mathematics, 1985, 27, 48-65.	0.2	21
69	An analysis of near-marginal, mildly penetrative convection with heat flux prescribed on the boundaries. Journal of Fluid Mechanics, 1985, 158, 71-93.	3.4	21
70	Highly nonlinear short-crested water waves. Journal of Fluid Mechanics, 1983, 135, 301.	3.4	93
71	Notes on long-crested water waves. Journal of Fluid Mechanics, 1983, 135, 323.	3.4	38
72	Slow-burning instabilities of Dufort-Frankel finite differencing. ANZIAM Journal, 0, 63, 23-38.	0.0	1

#	Article	IF	CITATIONS
73	Holistic finite differences accurately model the dynamics of the Kuramoto-Sivashinsky equation. ANZIAM Journal, 0, 42, 918.	0.0	12
74	Simple and fast multigrid solution of Poisson's equation using diagonally oriented grids. ANZIAM Journal, 0, 43, 1.	0.0	12
75	Holistic discretisation of shear dispersion in a two-dimensional channel. ANZIAM Journal, 0, 44, 512.	0.0	4
76	Derive boundary conditions for holistic discretisations of Burgers' equation. ANZIAM Journal, 0, 44, 664.	0.0	6
77	A step towards holistic discretisation of stochastic partial differential equations. ANZIAM Journal, 0, 45, 1.	0.0	20
78	Higher order accuracy in the gap-tooth scheme for large-scale dynamics using microscopic simulators. ANZIAM Journal, 0, 46, 637.	0.0	13
79	The dynamics of the vertical structure of turbulence in flood flows. ANZIAM Journal, 0, 48, 573.	0.0	2
80	Multiscale modelling couples patches of wave-like simulations. ANZIAM Journal, 0, 54, 153.	0.0	6
81	Couple microscale periodic patches to simulate macroscale emergent dynamics. ANZIAM Journal, 0, 59, 313.	0.0	ο