Michela Alfe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1883099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Buildingâ€Block Diversity in Polydopamine Underpins a Multifunctional Eumelaninâ€Type Platform Tunable Through a Quinone Control Point. Advanced Functional Materials, 2013, 23, 1331-1340.	7.8	482
2	Structure–property relationship in nanostructures of young and mature soot in premixed flames. Proceedings of the Combustion Institute, 2009, 32, 697-704.	2.4	240
3	lsotherms and thermodynamics of CO2 adsorption on a novel carbon-magnetite composite sorbent. Chemical Engineering Research and Design, 2018, 134, 540-552.	2.7	131
4	Soot nanostructure evolution in premixed flames by High Resolution Electron Transmission Microscopy (HRTEM). Proceedings of the Combustion Institute, 2015, 35, 1895-1902.	2.4	120
5	Kinetic study and breakthrough analysis of the hybrid physical/chemical CO2 adsorption/desorption behavior of a magnetite-based sorbent. Chemical Engineering Journal, 2019, 372, 526-535.	6.6	109
6	Stem cell-compatible eumelanin biointerface fabricated by chemically controlled solid state polymerization. Materials Horizons, 2015, 2, 212-220.	6.4	97
7	The effect of temperature on soot properties in premixed methane flames. Combustion and Flame, 2010, 157, 1959-1965.	2.8	93
8	Probing structures of soot formed in premixed flames of methane, ethylene and benzene. Proceedings of the Combustion Institute, 2013, 34, 1885-1892.	2.4	80
9	Mass spectrometric analysis of large PAH in a fuel-rich ethylene flame. Proceedings of the Combustion Institute, 2007, 31, 547-553.	2.4	78
10	CO2 capture performance of HKUST-1 in a sound assisted fluidized bed. Chemical Engineering Journal, 2014, 239, 75-86.	6.6	77
11	Aromatic structures of carbonaceous materials and soot inferred by spectroscopic analysis. Carbon, 2004, 42, 1583-1589.	5.4	70
12	Inherent Metal Elements in Biomass Pyrolysis: A Review. Energy & Fuels, 2021, 35, 5407-5478.	2.5	68
13	Chemico-physical features of soot emitted from a dual-fuel ethanol–diesel system. Fuel, 2015, 150, 154-161.	3.4	67
14	Diesel exhaust particles induce autophagy and citrullination in Normal Human Bronchial Epithelial cells. Cell Death and Disease, 2018, 9, 1073.	2.7	64
15	Assessing the Potential of Biochars Prepared by Steam-Assisted Slow Pyrolysis for CO ₂ Adsorption and Separation. Energy & Fuels, 2018, 32, 10218-10227.	2.5	64
16	Structural Characterization of Large Polycyclic Aromatic Hydrocarbons. Part 1: The Case of Coal Tar Pitch and Naphthalene-Derived Pitch. Energy & Fuels, 2015, 29, 5714-5722.	2.5	55
17	Synthesis and characterization of conductive copper-based metal-organic framework/graphene-like composites. Materials Chemistry and Physics, 2014, 147, 744-750.	2.0	54
18	Interfacial properties of carbon particulate-laden liquid interfaces and stability of related foams and emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 365, 189-198.	2.3	53

#	Article	IF	CITATIONS
19	BTC-based metal-organic frameworks: Correlation between relevant structural features and CO2 adsorption performances. Fuel, 2018, 222, 319-326.	3.4	50
20	Identification of large polycyclic aromatic hydrocarbons in carbon particulates formed in a fuel-rich premixed ethylene flame. Carbon, 2008, 46, 2059-2066.	5.4	48
21	Fingerprints of polycyclic aromatic hydrocarbons (PAHs) in infrared absorption spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 152, 134-148.	2.0	48
22	Vibrationally resolved high-resolution NEXAFS and XPS spectra of phenanthrene and coronene. Journal of Chemical Physics, 2014, 141, 044313.	1.2	47
23	Effect of Fuel/Air Ratio and Aromaticity on Sooting Behavior of Premixed Heptane Flames. Energy & Fuels, 2007, 21, 2655-2662.	2.5	45
24	Effect of fuel/air ratio and aromaticity on the molecular weight distribution of soot in premixed n-heptane flames. Proceedings of the Combustion Institute, 2009, 32, 803-810.	2.4	45
25	Wet Chemical Method for Making Graphene-like Films from Carbon Black. ACS Applied Materials & Interfaces, 2012, 4, 4491-4498.	4.0	44
26	Aggregation and interactions of C60 and C70 fullerenes in neat N-methylpyrrolidinone and in N-methylpyrrolidinone/toluene mixtures. Chemical Physics Letters, 2005, 405, 193-197.	1.2	42
27	Evidencing opposite charge-transfer processes at TiO2/graphene-related materials interface through a combined EPR, photoluminescence and photocatalysis assessment. Catalysis Today, 2018, 315, 19-30.	2.2	42
28	Adsorption of heavy metals on silica-supported hydrophilic carbonaceous nanoparticles (SHNPs). Journal of Hazardous Materials, 2020, 393, 122374.	6.5	42
29	Supplementing ï€-systems: eumelanin and graphene-like integration towards highly conductive materials for the mammalian cell culture bio-interface. Journal of Materials Chemistry B, 2015, 3, 5070-5079.	2.9	40
30	Influence of possible interactions between biomass organic components and alkali metal ions on steam assisted pyrolysis: A case study on Arundo donax. Journal of Analytical and Applied Pyrolysis, 2015, 112, 244-252.	2.6	40
31	TiO 2 /graphene-like photocatalysts for selective oxidation of 3-pyridine-methanol to vitamin B3 under UV/solar simulated radiation in aqueous solution at room conditions: The effect of morphology on catalyst performances. Applied Catalysis A: General, 2014, 487, 91-99.	2.2	39
32	Magnetite loaded carbon fine particles as low-cost CO2 adsorbent in a sound assisted fluidized bed. Proceedings of the Combustion Institute, 2015, 35, 2801-2809.	2.4	38
33	Antimicrobial properties of graphene-like nanoparticles: coating effect on Staphylococcus aureus. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	38
34	Diesel exhaust particle exposure in vitro impacts T lymphocyte phenotype and function. Particle and Fibre Toxicology, 2014, 11, 74.	2.8	37
35	Proinflammatory Effects of Diesel Exhaust Nanoparticles on Scleroderma Skin Cells. Journal of Immunology Research, 2014, 2014, 1-9	0.9	36
36	CO 2 sorption on surface-modified carbonaceous support: Probing the influence of the carbon black microporosity and surface polarity. Applied Surface Science, 2016, 360, 329-337.	3.1	35

#	Article	IF	CITATIONS
37	Distribution of Soot Molecular Weight/Size along Premixed Flames as Inferred by Size Exclusion Chromatography. Energy & Fuels, 2007, 21, 136-140.	2.5	31
38	Experimental and modeling study on the molecular weight distribution and properties of carbon particles in premixed sooting flames. Proceedings of the Combustion Institute, 2011, 33, 633-640.	2.4	31
39	The effect of temperature on the condensed phases formed in fuel-rich premixed benzene flames. Combustion and Flame, 2012, 159, 2233-2242.	2.8	31
40	Particle emissions from a HD SI gas engine fueled with LPG and CNG. Fuel, 2020, 269, 117439.	3.4	30
41	Spectral Analysis in the UV-Visible Range for Revealing the Molecular Form of Combustion-Generated Carbonaceous Species. Combustion Science and Technology, 2012, 184, 1219-1231.	1.2	27
42	Graphene-like layers as promising chemiresistive sensing material for detection of alcohols at low concentration. Journal of Applied Physics, 2018, 123, .	1,1	27
43	Effect of alkali metal ions presence on the products of xylan steam assisted slow pyrolysis. Fuel, 2018, 216, 36-43.	3.4	27
44	Solid sorbents for CO2 and CH4 adsorption: The effect of metal organic framework hybridization with graphene-like layers on the gas sorption capacities at high pressure. Renewable and Sustainable Energy Reviews, 2021, 141, 110816.	8.2	27
45	Preliminary study on the adoption of dark fermentation as pretreatment for a sustainable hydrothermal denaturation of cement-asbestos composites. Journal of Cleaner Production, 2017, 166, 172-180.	4.6	26
46	Effect of substrate temperature on MAPLE deposition of synthetic eumelanin films. Applied Physics A: Materials Science and Processing, 2011, 105, 619-627.	1.1	25
47	Similarities and dissimilarities in n-hexane and benzene sooting premixed flames. Proceedings of the Combustion Institute, 2007, 31, 585-591.	2.4	24
48	THz spectroscopy on graphene-like materials for bio-compatible devices. Journal of Applied Physics, 2017, 121, .	1.1	24
49	Advantages and limitations of laser desorption/ionization mass spectrometric techniques in the chemical characterization of complex carbonaceous materials. International Journal of Mass Spectrometry, 2010, 295, 98-102.	0.7	22
50	Slow pyrolysis of xylan as pentose model compound for hardwood hemicellulose: A study of the catalytic effect of Na ions. Journal of Analytical and Applied Pyrolysis, 2019, 137, 266-275.	2.6	22
51	Tuning the surface morphology of self-assembled graphene-like thin films through pH variation. Applied Surface Science, 2015, 353, 628-635.	3.1	21
52	Solar photocatalytic processes for treatment of soil washing wastewater. Chemical Engineering Journal, 2017, 318, 10-18.	6.6	21
53	Simple Ethanol Refluxing Method for Production of Blue-Colored Titanium Dioxide with Oxygen Vacancies and Visible Light-Driven Photocatalytic Properties. Journal of Physical Chemistry C, 2020, 124, 3564-3576.	1.5	21
54	Soot particles at the aqueous interface and effects on foams stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 413, 216-223.	2.3	20

#	Article	IF	CITATIONS
55	SPECTRAL PROPERTIES OF SOOT IN THE UV-VISIBLE RANGE. Combustion Science and Technology, 2007, 179, 371-385.	1.2	17
56	Characterization of Soot. Green Energy and Technology, 2013, , 333-362.	0.4	16
57	Eumelanin Graphene-Like Integration: The Impact on Physical Properties and Electrical Conductivity. Frontiers in Chemistry, 2019, 7, 121.	1.8	14
58	Solution behaviour of C60 fullerene in N-Methylpyrrolidinone/toluene mixtures. Carbon, 2005, 43, 665-667.	5.4	13
59	Characterization of nanometric carbon materials by time-resolved fluorescence polarization anisotropy. Optics and Lasers in Engineering, 2006, 44, 732-746.	2.0	13
60	Mesoporous TiO2 from Metal-Organic Frameworks for Photoluminescence-Based Optical Sensing of Oxygen. Catalysts, 2021, 11, 795.	1.6	13
61	Mass Spectrometric Advances in the Analysis of Large Aromatic Fractions of Heavy Fuel Oils and Carbon Particulates. Combustion Science and Technology, 2010, 182, 640-652.	1.2	11
62	On the modeling of heavy metals and rare earth elements adsorption on colloidal carbon-based nanoparticles. Applied Surface Science, 2020, 505, 144264.	3.1	11
63	Insights about the effect of composition, branching and molecular weight on the slow pyrolysis of xylose-based polysaccharides. Journal of Analytical and Applied Pyrolysis, 2022, 161, 105369.	2.6	11
64	Graphenic Nanoparticles from Combustion Sources Scavenge Hydroxyl Radicals Depending Upon Their Structure. BioNanoScience, 2013, 3, 112-122.	1.5	10
65	Characterization of Different Types of Diesel (EGR Cooler) Soot Samples. SAE International Journal of Engines, 0, 8, 1804-1814.	0.4	9
66	Chemical/Physical Features of Particles Emitted from a Modern Automotive Dual-Fuel Methane–Diesel Engine. Energy & Fuels, 2018, 32, 10154-10162.	2.5	9
67	Colloidal Carbon-Based Nanoparticles as Heavy Metal Adsorbent in Aqueous Solution: Cadmium Removal as a Case Study. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	8
68	Glycerol Hydrogenolysis to 1,2-Propanediol over Novel Cu/ZrO2 Catalysts. Catalysts, 2022, 12, 72.	1.6	8
69	Analysis of the Impact of the Dual-Fuel Ethanol-Diesel System on the Size, Morphology, and Chemical Characteristics of the Soot Particles Emitted from a LD Diesel Engine. , 0, , .		6
70	Removal of Very Small Submicrometric Particles by Water Nucleation: Effects of Chemical–Physical Properties of Particles. Energy & Fuels, 2018, 32, 10285-10294.	2.5	5
71	About the Influence of Doping Approach on the Alkali Metal Catalyzed Slow Pyrolysis of Xylan. Journal of Chemistry, 2019, 2019, 1-11.	0.9	5
72	Graphene-Like Layers from Carbon Black: In Vivo Toxicity Assessment. Nanomaterials, 2020, 10, 1472.	1.9	5

#	Article	IF	CITATIONS
73	A study on the structural features of the water-insoluble fraction (WIF) isolated from biomass slow steam pyrolysis liquids. Journal of Analytical and Applied Pyrolysis, 2016, 121, 128-137.	2.6	4
74	CO ₂ Adsorption under Dynamic Conditions: An Overview on Rice Husk-Derived Sorbents and Other Materials. Combustion Science and Technology, 2019, 191, 1484-1498.	1.2	4
75	Suitability of Nanoparticles to Face Benzo(a)pyrene-Induced Genetic and Chromosomal Damage in M. galloprovincialis. An In Vitro Approach. Nanomaterials, 2021, 11, 1309.	1.9	4
76	When Physical Chemistry Meets Circular Economy to Solve Environmental Issues: How the ReScA Project Aims at Using Waste Pyrolysis Products to Improve and Rejuvenate Bitumens. Sustainability, 2022, 14, 5790.	1.6	4
77	Time-resolved fluorescence polarization anisotropy of multimodal samples: the asphaltene case. Applied Physics B: Lasers and Optics, 2008, 90, 61-67.	1.1	3
78	An Old but Lively Nanomaterial: Exploiting Carbon Black for the Synthesis of Advanced Materials. Eurasian Chemico-Technological Journal, 2019, 21, 203.	0.3	3
79	Easy tuning of nanotexture and N doping of carbonaceous particles produced by spark discharge. Carbon Trends, 2021, 5, 100134.	1.4	3
80	Chemical and Spectroscopic Characterization of SOF and Soot from a Euro-4 Diesel Engine Fueled by Model Fuels. , 0, , .		2
81	Graphene-Like Based-Chemiresistors Inkjet-Printed onto Paper Substrate. Lecture Notes in Electrical Engineering, 2019, , 337-343.	0.3	2
82	Modified Carbonized Rice Husk as Low-Cost CO2 Adsorbent: Perspectives and Possible Improvements. DEStech Transactions on Materials Science and Engineering, 2017, , .	0.0	2
83	Graphene-Like Layers from Unconventional Carbon Sources: New Perspectives on Hybrid Materials and Ï€-system Synergisms. Eurasian Chemico-Technological Journal, 2017, 18, 263.	0.3	2
84	Acid Modification of Diatomite-Based Sorbents. Eurasian Chemico-Technological Journal, 2020, 22, 157.	0.3	2
85	SORPTION ABILITY OF MODIFIED NANO-CARBON MATERIALS. Series Chemistry and Technology, 2019, 3, 63-70.	0.1	1
86	Versatile and Scalable Approaches to Tune Carbon Black Characteristics for Boosting Adsorption and VOC Sensing Applications. , 0, , .		1
87	A New Chemical Sensing Material for Ethanol Detection: Graphene-Like Film. Lecture Notes in Electrical Engineering, 2018, , 59-65.	0.3	0
88	Nanocomposite material like advanced sorbent materials for carbon dioxide capture. Gorenie I Plazmohimiâ, 2021, 16, 115-119.	0.0	0
89	Carbon based nanocomposite material for CO2 capture technology. Gorenie I Plazmohimiâ, 2019, 17, 9-13.	0.0	0