Thilo Hofmann

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1882886/thilo-hofmann-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

183
papers

8,438
citations

47
h-index

87
g-index

195
ext. papers

7
avg, IF

6.66
L-index

#	Paper	IF	Citations
183	Rapid analysis of gunshot residues with single-particle inductively coupled plasma time-of-flight mass spectrometry <i>Forensic Science International</i> , 2022 , 332, 111202	2.6	2
182	Towards Standardization for Determining Dissolution Kinetics of Nanomaterials in Natural Aquatic Environments: Continuous Flow Dissolution of Ag Nanoparticles <i>Nanomaterials</i> , 2022 , 12,	5.4	2
181	Stormwater management in urban areas using dry gallery infiltration systems <i>Science of the Total Environment</i> , 2022 , 823, 153705	10.2	O
180	Parameter estimation and uncertainty analysis in hydrological modeling. <i>Wiley Interdisciplinary Reviews: Water</i> , 2022 , 9,	5.7	2
179	Pharmaceutical pollution of the world's rivers <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	37
178	Sorption and Mobility of Charged Organic Compounds: How to Confront and Overcome Limitations in Their Assessment <i>Environmental Science & Environmental Science & Environmen</i>	10.3	4
177	Exploring Nanogeochemical Environments: New Insights from Single Particle ICP-TOFMS and AF4-ICPMS <i>ACS Earth and Space Chemistry</i> , 2022 , 6, 943-952	3.2	1
176	Mikro- und Nanoplastik haben nur einen unwesentlichen Einfluss auf den vertikalen Stofftransport organischer Schadstoffe in landwirtschaftlichen Blen. <i>Vom Wasser</i> , 2022 , 120, 31-33		
175	Freshwater suspended particulate matter Ley components and processes in floc formation and dynamics. <i>Water Research</i> , 2022 , 220, 118655	12.5	O
174	Effects of heavy elements (Pb, Cu, Zn) on algal food uptake by (Foraminifera). <i>Heliyon</i> , 2021 , 7, e08427	3.6	1
173	Synergetic Tl and As retention in secondary minerals: An example of extreme arsenic and thallium pollution. <i>Applied Geochemistry</i> , 2021 , 135, 105114	3.5	3
172	Microplastic extraction protocols can impact the polymer structure. <i>Microplastics and Nanoplastics</i> , 2021 , 1,		6
171	Genomic insights into diverse bacterial taxa that degrade extracellular DNA in marine sediments. <i>Nature Microbiology</i> , 2021 , 6, 885-898	26.6	1
170	Methanol-based extraction protocol for insoluble and moderately water-soluble nanoparticles in plants to enable characterization by single particle ICP-MS. <i>Analytical and Bioanalytical Chemistry</i> , 2021 , 413, 299-314	4.4	5
169	Sulfidated nano-scale zerovalent iron is able to effectively reduce in situ hexavalent chromium in a contaminated aquifer. <i>Journal of Hazardous Materials</i> , 2021 , 405, 124665	12.8	15
168	Foreword to the research front on P lastics in the Environment [Environmental Chemistry, 2021 , 18, 91	3.2	
167	Environmentally persistent free radicals are ubiquitous in wildfire charcoals and remain stable for years. <i>Communications Earth & Environment</i> , 2021 , 2,	6.1	8

166	Microplastics and nanoplastics barely enhance contaminant mobility in agricultural soils. <i>Communications Earth & Environment</i> , 2021 , 2,	6.1	7
165	Wood ash amended biochar for the removal of lead, copper, zinc and cadmium from aqueous solution. <i>Environmental Technology and Innovation</i> , 2021 , 24, 101961	7	5
164	Additives and polymer composition influence the interaction of microplastics with xenobiotics. <i>Environmental Chemistry</i> , 2021 , 18, 101	3.2	2
163	A critical evaluation of short columns for estimating the attachment efficiency of engineered nanomaterials in natural soils. <i>Environmental Science: Nano</i> , 2021 , 8, 1801-1814	7.1	O
162	Anthropogenic gadolinium in freshwater and drinking water systems. Water Research, 2020, 182, 11596	6 12.5	14
161	A Large-Scale 3D Study on Transport of Humic Acid-Coated Goethite Nanoparticles for Aquifer Remediation. <i>Water (Switzerland)</i> , 2020 , 12, 1207	3	14
160	Combined Chemisorption and Complexation Generate siRNA Nanocarriers with Biophysics Optimized for Efficient Gene Knockdown and Air-Blood Barrier Crossing. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 30095-30111	9.5	3
159	Quantification and Characterization of Nanoparticulate Zinc in an Urban Watershed. <i>Frontiers in Environmental Science</i> , 2020 , 8,	4.8	11
158	Deep Learning Neural Network Approach for Predicting the Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials. <i>Environmental Science & Environmental Science </i>	10.3	48
157	Intra-laboratory assessment of a method for the detection of TiO2 nanoparticles present in sunscreens based on multi-detector asymmetrical flow field-flow fractionation. <i>NanoImpact</i> , 2020 , 19, 100233	5.6	4
156	Strategies for determining heteroaggregation attachment efficiencies of engineered nanoparticles in aquatic environments. <i>Environmental Science: Nano</i> , 2020 , 7, 351-367	7.1	35
155	Carbonates and cherts as archives of seawater chemistry and habitability on a carbonate platform 3.35[Ga ago: Insights from Sm/Nd dating and trace element analysis from the Strelley Pool Formation, Western Australia. <i>Precambrian Research</i> , 2020 , 344, 105742	3.9	4
154	The molecular interactions of organic compounds with tire crumb materials differ substantially from those with other microplastics. <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 121-130	4.3	4
153	Groundwater Chemistry Has a Greater Influence on the Mobility of Nanoparticles Used for Remediation than the Chemical Heterogeneity of Aquifer Media. <i>Environmental Science & Environmental Science & Technology</i> , 2020 , 54, 1250-1257	10.3	4
152	Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. <i>Nature Food</i> , 2020 , 1, 416-425	14.4	90
151	Comment on Predicting Aqueous Adsorption of Organic Compounds onto Biochars, Carbon Nanotubes, Granular Activated Carbons, And Resins with Machine Learning. <i>Environmental Science & Environmental Science</i>	10.3	1
150	The importance of aromaticity to describe the interactions of organic matter with carbonaceous materials depends on molecular weight and sorbent geometry. <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 1888-1897	4.3	6
149	Key Physicochemical Properties Dictating Gastrointestinal Bioaccessibility of Microplastics-Associated Organic Xenobiotics: Insights from a Deep Learning Approach. <i>Environmental Science & Environmental Science & Environme</i>	10.3	13

148	Accurate quantification of TiO nanoparticles in commercial sunscreens using standard materials and orthogonal particle sizing methods for verification. <i>Talanta</i> , 2020 , 215, 120921	6.2	15
147	NO and natural organic matter affect both soot aggregation behavior and sorption of S-metolachlor. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 1729-1735	4.3	3
146	Chemosymbiotic bivalves contribute to the nitrogen budget of seagrass ecosystems. <i>ISME Journal</i> , 2019 , 13, 3131-3134	11.9	16
145	Emerging contaminants in sediment core from the Iron Gate I Reservoir on the Danube River. <i>Science of the Total Environment</i> , 2019 , 662, 77-87	10.2	19
144	Complex-conductivity monitoring to delineate aquifer pore clogging during nanoparticles injection. <i>Geophysical Journal International</i> , 2019 , 218, 1838-1852	2.6	12
143	The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession. <i>PLoS ONE</i> , 2019 , 14, e0217165	3.7	97
142	Mineralogy and Weathering of Realgar-Rich Tailings At a Former As-Sb-Cr Mine At Lojane, North Macedonia. <i>Canadian Mineralogist</i> , 2019 , 1-21	0.7	2
141	Legal and practical challenges in classifying nanomaterials according to regulatory definitions. <i>Nature Nanotechnology</i> , 2019 , 14, 208-216	28.7	72
140	In situ remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. <i>Environmental Science: Nano</i> , 2019 , 6, 1283-1302	7.1	38
139	Persistence of copper-based nanoparticle-containing foliar sprays in Lactuca sativa (lettuce) characterized by spICP-MS. <i>Journal of Nanoparticle Research</i> , 2019 , 21, 1	2.3	13
138	Biochar particle aggregation in soil pore water: the influence of ionic strength and interactions with pyrene. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 1722-1728	4.3	4
137	The leaching of phthalates from PVC can be determined with an infinite sink approach. <i>MethodsX</i> , 2019 , 6, 2729-2734	1.9	6
136	Synthesis and biological evaluation of biotin-conjugated anticancer thiosemicarbazones and their iron(III) and copper(II) complexes. <i>Journal of Inorganic Biochemistry</i> , 2019 , 190, 85-97	4.2	21
135	Polyethylene microplastics influence the transport of organic contaminants in soil. <i>Science of the Total Environment</i> , 2019 , 657, 242-247	10.2	113
134	Sorption of organic substances to tire wear materials: Similarities and differences with other types of microplastic. <i>TrAC - Trends in Analytical Chemistry</i> , 2019 , 113, 392-401	14.6	40
133	Sorption of organic compounds by aged polystyrene microplastic particles. <i>Environmental Pollution</i> , 2018 , 236, 218-225	9.3	223
132	Environmental fate of nanopesticides: durability, sorption and photodegradation of nanoformulated clothianidin. <i>Environmental Science: Nano</i> , 2018 , 5, 882-889	7.1	49
131	Scientific rationale for the development of an OECD test guideline on engineered nanomaterial stability. <i>NanoImpact</i> , 2018 , 11, 42-50	5.6	22

130	Tire wear particles in the aquatic environment - A review on generation, analysis, occurrence, fate and effects. <i>Water Research</i> , 2018 , 139, 83-100	12.5	248
129	Data on sorption of organic compounds by aged polystyrene microplastic particles. <i>Data in Brief</i> , 2018 , 18, 474-479	1.2	19
128	Optimising the transport properties and reactivity of microbially-synthesised magnetite for in situ remediation. <i>Scientific Reports</i> , 2018 , 8, 4246	4.9	7
127	Development of a versatile analytical protocol for the comprehensive determination of the elemental composition of smartphone compartments on the example of printed circuit boards. <i>Analytical Methods</i> , 2018 , 10, 3864-3871	3.2	10
126	Where is the nano? Analytical approaches for the detection and quantification of TiO2 engineered nanoparticles in surface waters. <i>Environmental Science: Nano</i> , 2018 , 5, 313-326	7.1	77
125	Effect of field site hydrogeochemical conditions on the corrosion of milled zerovalent iron particles and their dechlorination efficiency. <i>Science of the Total Environment</i> , 2018 , 618, 1619-1627	10.2	13
124	Influence of compost and biochar on microbial communities and the sorption/degradation of PAHs and NSO-substituted PAHs in contaminated soils. <i>Journal of Hazardous Materials</i> , 2018 , 345, 107-113	12.8	54
123	Environmental transformation of natural and engineered carbon nanoparticles and implications for the fate of organic contaminants. <i>Environmental Science: Nano</i> , 2018 , 5, 2500-2518	7.1	34
122	Sorption to soil, biochar and compost: is prediction to multicomponent mixtures possible based on single sorbent measurements?. <i>PeerJ</i> , 2018 , 6, e4996	3.1	9
121	Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. <i>Environmental Science: Nano</i> , 2017 , 4, 307-314	7.1	96
120	Microplastic Exposure Assessment in Aquatic Environments: Learning from Similarities and Differences to Engineered Nanoparticles. <i>Environmental Science & Engineered Research Resea</i>	7 ^{10.3}	103
119	Effect of ageing on the properties and polycyclic aromatic hydrocarbon composition of biochar. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 768-774	4.3	20
118	TiO2 nanomaterial detection in calcium rich matrices by spICPMS. A matter of resolution and treatment. <i>Journal of Analytical Atomic Spectrometry</i> , 2017 , 32, 1400-1411	3.7	27
117	Bioavailability and toxicity of pyrene in soils upon biochar and compost addition. <i>Science of the Total Environment</i> , 2017 , 595, 132-140	10.2	30
116	Interactions between aromatic hydrocarbons and functionalized C60 fullerenes linsights from experimental data and molecular modelling. <i>Environmental Science: Nano</i> , 2017 , 4, 1045-1053	7.1	15
115	Biochar total surface area and total pore volume determined by N and CO physisorption are strongly influenced by degassing temperature. <i>Science of the Total Environment</i> , 2017 , 580, 770-775	10.2	74
114	Sensitivity towards the GRP78 inhibitor KP1339/IT-139 is characterized by apoptosis induction via caspase 8 upon disruption of ER homeostasis. <i>Cancer Letters</i> , 2017 , 404, 79-88	9.9	24
113	Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials. <i>Water Research</i> , 2017 , 124, 673-692	12.5	211

112	Cytotoxicity of Biochar: A Workplace Safety Concern?. <i>Environmental Science and Technology Letters</i> , 2017 , 4, 362-366	11	37
111	Impact of Sodium Humate Coating on Collector Surfaces on Deposition of Polymer-Coated Nanoiron Particles. <i>Environmental Science & Environmental Scien</i>	10.3	13
110	Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry. <i>Analytical and Bioanalytical Chemistry</i> , 2016 , 408, 6679-91	4.4	26
109	Impacts of (Nano)formulations on the Fate of an Insecticide in Soil and Consequences for Environmental Exposure Assessment. <i>Environmental Science & Environmental Science & E</i>	10.3	54
108	Anthropogenic gadolinium as a transient tracer for investigating river bank filtration. <i>Science of the Total Environment</i> , 2016 , 571, 1432-40	10.2	16
107	Quantification of river water infiltration in shallow aquifers using acesulfame and anthropogenic gadolinium. <i>Hydrological Processes</i> , 2016 , 30, 1742-1756	3.3	10
106	Vulnerability of drinking water supplies to engineered nanoparticles. Water Research, 2016, 96, 255-79	12.5	63
105	Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: Influence of run conditions and of particle and membrane charges. <i>Journal of Chromatography A</i> , 2016 , 1440, 150	- 1 559	36
104	Predicting the Sorption of Aromatic Acids to Noncarbonized and Carbonized Sorbents. <i>Environmental Science & Environmental Sci</i>	10.3	34
103	Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation. <i>Science of the Total Environment</i> , 2016 , 563-564, 713-23	10.2	24
102	Pyrolysis of waste materials: Characterization and prediction of sorption potential across a wide range of mineral contents and pyrolysis temperatures. <i>Bioresource Technology</i> , 2016 , 214, 225-233	11	22
101	Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. <i>Environmental Pollution</i> , 2016 , 214, 194-201	9.3	282
100	Combining gas-phase electrophoretic mobility molecular analysis (GEMMA), light scattering, field flow fractionation and cryo electron microscopy in a multidimensional approach to characterize liposomal carrier vesicles. <i>International Journal of Pharmaceutics</i> , 2016 , 513, 309-318	6.5	16
99	Nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA) of liposomes: applicability of the technique for nano vesicle batch control. <i>Analyst, The</i> , 2016 , 141, 6042-60	0\\$0	12
98	Measuring the reactivity of commercially available zero-valent iron nanoparticles used for environmental remediation with iopromide. <i>Journal of Contaminant Hydrology</i> , 2015 , 181, 36-45	3.9	16
97	Feasibility of the development of reference materials for the detection of Ag nanoparticles in food: neat dispersions and spiked chicken meat. <i>Accreditation and Quality Assurance</i> , 2015 , 20, 3-16	0.7	29
96	Comment on the German draft legislation on hydraulic fracturing: the need for an accurate state of knowledge and for independent scientific research. <i>Environmental Science & Environmental Science &</i>	10.3	6
95	A uniform measurement expression for cross method comparison of nanoparticle aggregate size distributions. <i>Analyst, The</i> , 2015 , 140, 5257-67	5	13

94	Bacterial wax esters in recent fluvial sediments. Organic Geochemistry, 2015, 89-90, 44-55	3.1	3
93	River-derived humic substances as iron chelators in seawater. <i>Marine Chemistry</i> , 2015 , 174, 85-93	3.7	55
92	Concentrations and Distributions of Metals Associated with Dissolved Organic Matter from the Suwannee River (GA, USA). <i>Environmental Engineering Science</i> , 2015 , 32, 54-65	2	19
91	Application of laser-induced breakdown-detection as a sensitive detector for UF membrane surrogate challenge tests. <i>Water Science and Technology: Water Supply</i> , 2015 , 15, 377-383	1.4	
90	The Challenge: Carbon nanomaterials in the environment: New threats or wonder materials?. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 954	3.8	10
89	Detection of Engineered Copper Nanoparticles in Soil Using Single Particle ICP-MS. <i>International Journal of Environmental Research and Public Health</i> , 2015 , 12, 15756-68	4.6	73
88	First steps towards a generic sample preparation scheme for inorganic engineered nanoparticles in a complex matrix for detection, characterization, and quantification by asymmetric flow-field flow fractionation coupled to multi-angle light scattering and ICP-MS. <i>Journal of Analytical Atomic</i>	3.7	60
87	Analysing the fate of nanopesticides in soil and the applicability of regulatory protocols using a polymer-based nanoformulation of atrazine. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 11699-707	5.1	39
86	Production of reference materials for the detection and size determination of silica nanoparticles in tomato soup. <i>Analytical and Bioanalytical Chemistry</i> , 2014 , 406, 3895-907	4.4	32
85	Nanopesticide research: current trends and future priorities. <i>Environment International</i> , 2014 , 63, 224-3	3512.9	444
8 ₅	Nanopesticide research: current trends and future priorities. <i>Environment International</i> , 2014 , 63, 224-55. Spot the difference: engineered and natural nanoparticles in the environmentrelease, behavior, and fate. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12398-419	3512.9 16.4	
	Spot the difference: engineered and natural nanoparticles in the environmentrelease, behavior,		
84	Spot the difference: engineered and natural nanoparticles in the environmentrelease, behavior, and fate. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12398-419 Accessibility of humic-associated Fe to a microbial siderophore: implications for bioavailability.	16.4	91
84	Spot the difference: engineered and natural nanoparticles in the environmentrelease, behavior, and fate. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12398-419 Accessibility of humic-associated Fe to a microbial siderophore: implications for bioavailability. <i>Environmental Science & Discourse Mamp; Technology</i> , 2014 , 48, 1015-22 A tree-based statistical classification algorithm (CHAID) for identifying variables responsible for the occurrence of faecal indicator bacteria during waterworks operations. <i>Journal of Hydrology</i> , 2014 ,	16.4	91
84 83 82	Spot the difference: engineered and natural nanoparticles in the environmentrelease, behavior, and fate. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12398-419 Accessibility of humic-associated Fe to a microbial siderophore: implications for bioavailability. <i>Environmental Science & Discourse amp; Technology</i> , 2014 , 48, 1015-22 A tree-based statistical classification algorithm (CHAID) for identifying variables responsible for the occurrence of faecal indicator bacteria during waterworks operations. <i>Journal of Hydrology</i> , 2014 , 519, 909-917 Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old	16.4	91 19 4
84 83 82 81	Spot the difference: engineered and natural nanoparticles in the environmentrelease, behavior, and fate. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12398-419 Accessibility of humic-associated Fe to a microbial siderophore: implications for bioavailability. <i>Environmental Science & Mamp; Technology</i> , 2014 , 48, 1015-22 A tree-based statistical classification algorithm (CHAID) for identifying variables responsible for the occurrence of faecal indicator bacteria during waterworks operations. <i>Journal of Hydrology</i> , 2014 , 519, 909-917 Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube recreational Lake. <i>Environmental Science & Mamp; Technology</i> , 2014 , 48, 5415-22 Sorption behavior of carbon nanotubes: changes induced by functionalization, sonication and	16.4 10.3 6	91 19 4 283
84 83 82 81 80	Spot the difference: engineered and natural nanoparticles in the environmentrelease, behavior, and fate. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12398-419 Accessibility of humic-associated Fe to a microbial siderophore: implications for bioavailability. <i>Environmental Science & Diagnostical Characteria Science</i>	16.4 10.3 6 10.3	91 19 4 283 24

76	Asymmetrical Flow-Field-Flow Fractionation coupled with inductively coupled plasma mass spectrometry for the analysis of gold nanoparticles in the presence of natural nanoparticles. Journal of Chromatography A, 2014, 1372C, 204-211	4.5	30
75	Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes. <i>Water Research</i> , 2014 , 50, 70-9	12.5	46
74	Nanopesticides: State of Knowledge, Environmental Fate, and Exposure Modeling. <i>Critical Reviews in Environmental Science and Technology</i> , 2013 , 43, 1823-1867	11.1	312
73	Natural organic matter concentration and hydrochemistry influence aggregation kinetics of functionalized engineered nanoparticles. <i>Environmental Science & Environmental Scie</i>	10.3	76
72	How redox conditions and irradiation affect sorption of PAHs by dispersed fullerenes (nC60). <i>Environmental Science & Environmental Science & Environm</i>	10.3	43
71	Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation. <i>Environmental Pollution</i> , 2013 , 179, 53-60	9.3	67
7º	The role of nanominerals and mineral nanoparticles in the transport of toxic trace metals: Field-flow fractionation and analytical TEM analyses after nanoparticle isolation and density separation. <i>Geochimica Et Cosmochimica Acta</i> , 2013 , 102, 213-225	5.5	73
69	Combining spatially resolved hydrochemical data with in-vitro nanoparticle stability testing: assessing environmental behavior of functionalized gold nanoparticles on a continental scale. <i>Environment International</i> , 2013 , 59, 53-62	12.9	14
68	Variations of common riverine contaminants in reservoir sediments. <i>Science of the Total Environment</i> , 2013 , 458-460, 90-100	10.2	15
67	Colloid-associated export of arsenic in stream water during stormflow events. <i>Chemical Geology</i> , 2013 , 352, 81-91	4.2	39
66	The influence of pH on iron speciation in podzol extracts: iron complexes with natural organic matter, and iron mineral nanoparticles. <i>Science of the Total Environment</i> , 2013 , 461-462, 108-16	10.2	46
65	Positive and negative impacts of five Austrian gravel pit lakes on groundwater quality. <i>Science of the Total Environment</i> , 2013 , 443, 14-23	10.2	18
64	Using FLOWFFF and HPSEC to determine trace metal-colloid associations in wetland runoff. <i>Water Research</i> , 2013 , 47, 2757-69	12.5	47
63	Effect of pH and stream order on iron and arsenic speciation in boreal catchments. <i>Environmental Science & Environmental Scie</i>	10.3	93
62	Natural organic matter and iron export from the Tanner Moor, Austria. <i>Limnologica</i> , 2013 , 43, 239-244	2	23
61	Material Flow Analysis: An Effectiveness Assessment Tool for In Situ Thermal Remediation. <i>Vadose Zone Journal</i> , 2013 , 12, vzj2012.0113	2.7	2
60	Gravel pit lake ecosystems reduce nitrate and phosphate concentrations in the outflowing groundwater. <i>Science of the Total Environment</i> , 2012 , 420, 222-8	10.2	12
59	Dispersion state and humic acids concentration-dependent sorption of pyrene to carbon nanotubes. <i>Environmental Science & Environmental Science & Envi</i>	10.3	53

(2010-2012)

58	Bovine serum albumin adsorption to iron-oxide coated sands can change microsphere deposition mechanisms. <i>Environmental Science & Environmental Scienc</i>	10.3	22
57	The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna. <i>Aquatic Toxicology</i> , 2012 , 118-119, 1-8	5.1	66
56	Identification of coffee components that stimulate dopamine release from pheochromocytoma cells (PC-12). <i>Food and Chemical Toxicology</i> , 2012 , 50, 390-8	4.7	15
55	Nanoscale lignin particles as sources of dissolved iron to the ocean. <i>Global Biogeochemical Cycles</i> , 2012 , 26,	5.9	46
54	Modeling colloid deposition on a protein layer adsorbed to iron-oxide-coated sand. <i>Journal of Contaminant Hydrology</i> , 2012 , 142-143, 50-62	3.9	7
53	Influence of surface functionalization and particle size on the aggregation kinetics of engineered nanoparticles. <i>Chemosphere</i> , 2012 , 87, 918-24	8.4	84
52	Comparing the Influence of Two Different Natural Organic Matter Types on Colloid Deposition in Saturated Porous Medium. <i>Advanced Materials Research</i> , 2012 , 455-456, 1324-1329	0.5	1
51	Natural, anthropogenic and fossil organic matter in river sediments and suspended particulate matter: a multi-molecular marker approach. <i>Science of the Total Environment</i> , 2011 , 409, 905-19	10.2	29
50	The lack of microbial degradation of polycyclic aromatic hydrocarbons from coal-rich soils. <i>Environmental Pollution</i> , 2011 , 159, 623-9	9.3	23
49	Influence of ionic strength and pH on the limitation of latex microsphere deposition sites on iron-oxide coated sand by humic acid. <i>Environmental Pollution</i> , 2011 , 159, 1896-904	9.3	26
48	Variations in concentrations and compositions of polycyclic aromatic hydrocarbons (PAHs) in coals related to the coal rank and origin. <i>Environmental Pollution</i> , 2011 , 159, 2690-7	9.3	41
47	Influence of carrier solution ionic strength and injected sample load on retention and recovery of natural nanoparticles using Flow Field-Flow Fractionation. <i>Journal of Chromatography A</i> , 2011 , 1218, 6763-73	4.5	40
46	Commercial titanium dioxide nanoparticles in both natural and synthetic water: comprehensive multidimensional testing and prediction of aggregation behavior. <i>Environmental Science & Environmental Science & Technology</i> , 2011 , 45, 10045-52	10.3	162
45	Measuring and modeling adsorption of PAHs to carbon nanotubes over a six order of magnitude wide concentration range. <i>Environmental Science & Environmental Science & Environ</i>	10.3	96
44	Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. <i>TrAC - Trends in Analytical Chemistry</i> , 2011 , 30, 425-436	14.6	221
43	Using FlFFF and aTEM to determine trace metalBanoparticle associations in riverbed sediment. <i>Environmental Chemistry</i> , 2010 , 7, 82	3.2	86
42	Organic geochemistry of Danube River sediments from Panēvo (Serbia) to the Iron Gate dam (SerbiaRomania). <i>Organic Geochemistry</i> , 2010 , 41, 971-974	3.1	13
41	Nanosized iron oxide colloids strongly enhance microbial iron reduction. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 184-9	4.8	82

40	Umweltrelevanz von natflichen polyzyklischen aromatischen Kohlenwasserstoffen aus Steinkohlen Leine Bersicht. <i>Grundwasser</i> , 2010 , 15, 5-18	1.1	5
39	Direct-push profiling of isotopic and hydrochemical vertical gradients. <i>Journal of Hydrology</i> , 2010 , 385, 84-94	6	10
38	Importance of the nugget effect in variography on modeling zinc leaching from a contaminated site using simulated annealing. <i>Journal of Hydrology</i> , 2010 , 389, 78-89	6	6
37	Relevance of peat-draining rivers for the riverine input of dissolved iron into the ocean. <i>Science of the Total Environment</i> , 2010 , 408, 2402-8	10.2	79
36	Quantifying the influence of humic acid adsorption on colloidal microsphere deposition onto iron-oxide-coated sand. <i>Environmental Pollution</i> , 2010 , 158, 3498-506	9.3	33
35	Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing. <i>Environmental Pollution</i> , 2010 , 158, 3472-81	9.3	84
34	Algal testing of titanium dioxide nanoparticlestesting considerations, inhibitory effects and modification of cadmium bioavailability. <i>Toxicology</i> , 2010 , 269, 190-7	4.4	247
33	Tetrachloroferrate containing ionic liquids: Magnetic- and aggregation behavior. <i>Inorganic Chemistry Communication</i> , 2010 , 13, 1485-1488	3.1	25
32	Native polycyclic aromatic hydrocarbons (PAH) in coals - a hardly recognized source of environmental contamination. <i>Science of the Total Environment</i> , 2009 , 407, 2461-73	10.2	177
31	An ArcGIS approach to include tectonic structures in point data regionalization. <i>Ground Water</i> , 2009 , 47, 591-7	2.4	8
30	Nanostructured TiO2: transport behavior and effects on aquatic microbial communities under environmental conditions. <i>Environmental Science & Environmental Science & Environm</i>	10.3	198
29	Estimating the relevance of engineered carbonaceous nanoparticle facilitated transport of hydrophobic organic contaminants in porous media. <i>Environmental Pollution</i> , 2009 , 157, 1117-26	9.3	104
28	Occurrence and behaviour of selected hydrophobic alkylphenolic compounds in the Danube River. <i>Environmental Pollution</i> , 2009 , 157, 2759-68	9.3	41
27	Aqueous accelerated solvent extraction of native polycyclic aromatic hydrocarbons (PAHs) from carbonaceous river floodplain soils. <i>Environmental Pollution</i> , 2009 , 157, 2604-9	9.3	7
26	Humic acid adsorption and surface charge effects on schwertmannite and goethite in acid sulphate waters. <i>Water Research</i> , 2008 , 42, 2051-60	12.5	70
25	Occurrence of coal and coal-derived particle-bound polycyclic aromatic hydrocarbons (PAHs) in a river floodplain soil. <i>Environmental Pollution</i> , 2008 , 151, 121-9	9.3	73
24	Sorption of polycyclic aromatic hydrocarbons (PAHs) to carbonaceous materials in a river floodplain soil. <i>Environmental Pollution</i> , 2008 , 156, 1357-63	9.3	35
23	PAH desorption from river floodplain soils using supercritical fluid extraction. <i>Environmental Pollution</i> , 2008 , 156, 745-52	9.3	29

(2003-2008)

22	Identification of carbonaceous geosorbents for PAHs by organic petrography in river floodplain soils. <i>Chemosphere</i> , 2008 , 71, 2158-67	8.4	42
21	Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. <i>Chemosphere</i> , 2008 , 72, 1594-1601	8.4	219
20	Ageing of synthetic and natural schwertmannites at pH 28. Clay Minerals, 2008, 43, 437-448	1.3	37
19	Nanoparticles: structure, properties, preparation and behaviour in environmental media. <i>Ecotoxicology</i> , 2008 , 17, 326-43	2.9	433
18	Identifying sources of polycyclic aromatic hydrocarbons (PAHs) in soils: distinguishing point and non-point sources using an extended PAH spectrum and n-alkanes. <i>Journal of Soils and Sediments</i> , 2008 , 8, 312-322	3.4	29
17	Zn and Pb release of sphalerite (ZnS)-bearing mine waste tailings. <i>Journal of Soils and Sediments</i> , 2008 , 8, 433-441	3.4	22
16	Elevated polycyclic aromatic hydrocarbons in a river floodplain soil due to coal mining activities. <i>Water Science and Technology: Water Supply</i> , 2007 , 7, 69-74	1.4	10
15	Vertical distribution and speciation of trace metals in weathering flotation residues of a zinc/lead sulfide mine. <i>Journal of Environmental Quality</i> , 2007 , 36, 61-9	3.4	39
14	Particles in Water. Properties and Processes. Herausgegeben von John Gregory <i>Angewandte Chemie</i> , 2007 , 119, 3683-3683	3.6	
13	Colloid facilitated transport of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) to the groundwater at Ma Da area, Vietnam. <i>Environmental Science and Pollution Research</i> , 2007 , 14, 223-4	5.1	34
12	Distribution of polycyclic aromatic hydrocarbons (PAHs) in floodplain soils of the Mosel and Saar River. <i>Journal of Soils and Sediments</i> , 2007 , 7, 216-222	3.4	65
11	Beispiele fil Nutzen und Risiko der Nanotechnologie aus der Sicht der Umweltgeowissenschaften IWas Wir Wissen und was Wir Lernen Misen 2007 , 83-100		
10	Methods of metal release assessment in soil water at anoxic sites. Clean - Soil, Air, Water, 2006, 34, 579-	586	4
9	Comparability of and Alternatives to Leaching Tests for the Assessment of the Emission of Inorganic Soil Contamination (11 pp). <i>Journal of Soils and Sediments</i> , 2006 , 6, 102-112	3.4	29
8	HCHs and DDTs in sediment-dwelling animals from the Yangtze Estuary, China. <i>Chemosphere</i> , 2006 , 62, 381-9	8.4	43
7	Kolloide: Die Welt der vernachl\(\bar{B} \)sigten Dimensionen. <i>Chemie in Unserer Zeit</i> , 2004 , 38, 24-35	0.2	6
6	Aquatische Kolloide I: Eine Bersichtsarbeit zur Definition, zu Systemen und zur Relevanz. <i>Grundwasser</i> , 2003 , 8, 203-212	1.1	20
5	Aquatische Kolloide II: Eine Bersichtsarbeit zur Probennahme, Probenaufbereitung und Charakterisierung. <i>Grundwasser</i> , 2003 , 8, 213-223	1.1	16

4	Aquatische Kolloide: Kleine Teilchen - groß Wirkung. <i>Nachrichten Aus Der Chemie</i> , 2001 , 49, 1291-1295 O.1	5
3	The German Water Chemical Society: Actual Trends and Fields of Research in the Principle Committee B asic Research []Clean - Soil, Air, Water, 2001 , 29, 419	
2	Natural Colloids and Nanoparticles in Aquatic and Terrestrial Environments109-161	8
1	DNA-foraging bacteria in the seafloor	4