Sreenivas Jayanti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1882668/publications.pdf

Version: 2024-02-01

81743 128067 4,527 145 39 60 citations g-index h-index papers 152 152 152 2874 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electrolyte circulation effects in electrochemical performance for different flow fields of allâ \in v anadium redox flow battery. Energy Storage, 2023, 5, .	2.3	1
2	Minimizing Heat Transfer Resistance in an Integrated Methanol Steam Reformer Designed Using Space-Filling Curves. Industrial & Engineering Chemistry Research, 2022, 61, 5255-5271.	1.8	4
3	Influence of electrode design parameters on the performance of vanadium redox flow battery cells at low temperatures. Journal of Power Sources, 2021, 482, 228988.	4.0	17
4	Case studies of operational failures of vanadium redox flow battery stacks, diagnoses and remedial actions. Journal of Energy Storage, 2021, 33, 102078.	3.9	13
5	Effective splitting of serpentine flow field for applications in large-scale flow batteries. Journal of Power Sources, 2021, 487, 229409.	4.0	34
6	Dataset on performance of large-scale vanadium redox flow batteries with serpentine flow fields. Data in Brief, 2021, 35, 106835.	0.5	4
7	Comparative Study of Kilowatt-Scale Vanadium Redox Flow Battery Stacks Designed with Serpentine Flow Fields and Split Manifolds. Batteries, 2021, 7, 30.	2.1	9
8	Power and Energy Rating Considerations in Integration of Flow Battery with Solar PV and Residential Load. Batteries, 2021, 7, 62.	2.1	15
9	A land-use-constrained, generation–transmission model for electricity generation through solar photovoltaic technology: a case study of south India. Clean Technologies and Environmental Policy, 2021, 23, 2757-2774.	2.1	4
10	Characteristics of an Indigenously Developed 1ÂKW Vanadium Redox Flow Battery Stack. Springer Proceedings in Energy, 2021, , 923-929.	0.2	3
11	Thermodynamics of Redox Flow Batteries. , 2021, , .		O
12	Effect of electrolyte convection velocity in the electrode on the performance of vanadium redox flow battery cells with serpentine flow fields. Journal of Energy Storage, 2020, 30, 101516.	3.9	24
13	Performance characteristics of several variants of interdigitated flow fields for flow battery applications. Journal of Power Sources, 2020, 467, 228225.	4.0	32
14	Optimal sizing of a fuel processor for auxiliary power applications of a fuel cell-powered passenger car. International Journal of Hydrogen Energy, 2020, 45, 26005-26019.	3.8	9
15	Effect of electrode compression and operating parameters on the performance of large vanadium redox flow battery cells. Journal of Power Sources, 2019, 427, 231-242.	4.0	33
16	Complete Reduction of Ilmenite by CO in Chemical Looping Combustion—Multistep Kinetic Model Approach. Energy & Complete Reduction of Ilmenite by CO in Chemical Looping Combustion—Multistep Kinetic Model Approach. Energy & Complete Reduction of Ilmenite by CO in Chemical Looping Combustion—Multistep Kinetic Model	2.5	4
17	Fuel processor-battery-fuel cell hybrid drivetrain for extended range operation of passenger vehicles. International Journal of Hydrogen Energy, 2019, 44, 15494-15510.	3.8	17
18	Effect of channel dimensions of serpentine flow fields on the performance of a vanadium redox flow battery. Journal of Energy Storage, 2019, 23, 148-158.	3.9	41

#	Article	IF	CITATIONS
19	Study of gas-liquid upward annular flow through a contraction. Annals of Nuclear Energy, 2019, 129, 169-180.	0.9	6
20	A mechanistic model for expansion loss coefficient in upward vertical annular flow. Applied Mathematical Modelling, 2018, 60, 552-570.	2.2	6
21	Computational Fluid Dynamics for Engineers and Scientists. , 2018, , .		10
22	CFD Simulation of Flow Through the Reconstructed Microstructure of Fibrous Gas Diffusion Layer in a Polymer Electrolyte Membrane Fuel Cell. Chemical Product and Process Modeling, 2018, 13, .	0.5	3
23	Experimental studies of permeability measurement and hydrodynamics study of all-Vanadium redox flow battery. Materials Today: Proceedings, 2018, 5, 23169-23176.	0.9	2
24	Heat transfer enhancement due to internal circulation within a rising fluid drop. Thermal Science and Engineering Progress, 2018, 8, 385-396.	1.3	10
25	Improving efficiency of CCS-enabled IGCC power plant through the use of recycle flue gas for coal gasification. Clean Technologies and Environmental Policy, 2018, 20, 1207-1218.	2.1	5
26	Stack Design Considerations for Vanadium Redox Flow Battery. INAE Letters, 2018, 3, 149-157.	1.0	25
27	Shape optimization of flow split ducting elements using an improved Box complex method. Engineering Optimization, 2017, 49, 199-215.	1.5	2
28	Water neutrality and waste heat management in ethanol reformer - HTPEMFC integrated system for on-board hydrogen generation. Applied Energy, 2017, 199, 169-179.	5.1	8
29	Effect of electrode intrusion on pressure drop and electrochemical performance of an all-vanadium redox flow battery. Journal of Power Sources, 2017, 360, 548-558.	4.0	48
30	Flow Control in T-Junction Using CFD Based Optimization. Lecture Notes in Mechanical Engineering, 2017, , 687-696.	0.3	0
31	High Energy Efficiency With Low-Pressure Drop Configuration for an All-Vanadium Redox Flow Battery. Journal of Electrochemical Energy Conversion and Storage, 2016, 13, .	1.1	10
32	Auto-ignition temperature and burning rate of potassium pool fire in a confined enclosure. Combustion and Flame, 2016, 168, 286-295.	2.8	3
33	Peclet number analysis of cross-flow in porous gas diffusion layer of polymer electrolyte membrane fuel cell (PEMFC). Environmental Science and Pollution Research, 2016, 23, 20120-20130.	2.7	17
34	Detailed plant layout studies of oxy-enriched CO2 pulverized coal combustion-based power plant with CO2 enrichment. Clean Technologies and Environmental Policy, 2016, 18, 1985-1996.	2.1	6
35	Flow apportionment algorithm for optimization of power plant ducting. Applied Thermal Engineering, 2016, 94, 715-726.	3.0	1
36	A high-efficiency, auto-thermal system for on-board hydrogen production for low temperature PEM fuel cells using dual reforming of ethanol. International Journal of Hydrogen Energy, 2016, 41, 13800-13810.	3.8	31

#	Article	IF	Citations
37	Synergetic and inhibition effects in carbon dioxide gasification of blends of coals and biomass fuels of Indian origin. Bioresource Technology, 2016, 209, 157-165.	4.8	58
38	Evaluation of CO2 gasification kinetics for low-rank Indian coals and biomass fuels. Journal of Thermal Analysis and Calorimetry, 2016, 123, 467-478.	2.0	28
39	Effect of flow field on the performance of an all-vanadium redox flow battery. Journal of Power Sources, 2016, 307, 782-787.	4.0	129
40	An automated procedure for the optimal positioning of guide plates in a flow manifold using Box complex method. Applied Thermal Engineering, 2015, 76, 292-300.	3.0	9
41	Viability of fuel switching of a gas-fired power plant operating in chemical looping combustion mode. Energy, 2015, 81, 213-221.	4.5	11
42	Comparative analysis of four gas-fired, carbon capture-enabled power plant layouts. Clean Technologies and Environmental Policy, 2015, 17, 2143-2156.	2.1	10
43	Effect of impeller type and density difference on the draw down of low density microspheres. Chemical Engineering Research and Design, 2015, 104, 571-578.	2.7	4
44	Syngas-fueled, chemical-looping combustion-based power plant lay-out for clean energy generation. Clean Technologies and Environmental Policy, 2015, 17, 237-247.	2.1	13
45	Shape Optimisation of Curved Interconnecting Ducts. Defence Science Journal, 2015, 65, 300.	0.5	7
46	Heat-affected zone analysis of high ash coals during ex situ experimental simulation of underground coal gasification. Fuel, 2014, 123, 167-174.	3.4	26
47	Deactivation and regeneration of Ni catalyst during steam reforming of model biogas: An experimental investigation. International Journal of Hydrogen Energy, 2014, 39, 297-304.	3.8	83
48	A detailed kinetic model for biogas steam reforming on Ni and catalyst deactivation due to sulfur poisoning. Applied Catalysis A: General, 2014, 471, 118-125.	2.2	81
49	Thermal management of high temperature polymer electrolyte membrane fuel cell stacks in the power range of 1–10ÂkWe. International Journal of Hydrogen Energy, 2014, 39, 20127-20138.	3.8	13
50	Hydrodynamic analysis of flow fields for redox flow battery applications. Journal of Applied Electrochemistry, 2014, 44, 995-1006.	1.5	78
51	Numerical simulation of the hydrodynamics of a liquid solid circulating fluidized bed. Powder Technology, 2014, 251, 61-70.	2.1	16
52	Ex-situ experimental studies on serpentine flow field design for redox flow battery systems. Journal of Power Sources, 2014, 248, 140-146.	4.0	66
53	Experimental and modelling studies of gas–liquid vertical annular flow through a diverging section. International Journal of Multiphase Flow, 2014, 67, 180-190.	1.6	12
54	Parametric study of an external coolant system for a high temperature polymer electrolyte membrane fuel cell. Applied Thermal Engineering, 2013, 58, 155-164.	3.0	28

#	Article	IF	Citations
55	Effect of spacer grids on CHF in nuclear rod bundles. Nuclear Engineering and Design, 2013, 261, 66-75.	0.8	22
56	A conceptual model of a high-efficiency, stand-alone power unit based on a fuel cell stack with an integrated auto-thermal ethanol reformer. Applied Energy, 2013, 110, 295-303.	5.1	44
57	A model for the prediction of safe heat flux from a downward-facing hot patch. Nuclear Engineering and Design, 2013, 265, 45-52.	0.8	O
58	Heuristic shape optimization of gas ducting in process and power plants. Chemical Engineering Research and Design, 2013, 91, 999-1008.	2.7	7
59	Assessment of retrofitting possibility of an Indian pulverized coal boiler for operation with Indian coals in oxy-coal combustion mode with CO ₂ sequestration. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2012, 226, 1003-1013.	0.8	12
60	Optimized enriched CO2 recycle oxy-fuel combustion for high ash coals. Fuel, 2012, 102, 32-40.	3.4	29
61	Thermal management strategies for a 1ÂkWe stack of a high temperature proton exchange membrane fuel cell. Applied Thermal Engineering, 2012, 48, 465-475.	3.0	80
62	Thermal Coupling Studies of a High Temperature Proton Exchange Membrane Fuel Cell Stack and a Metal Hydride Hydrogen Storage System. Energy Procedia, 2012, 29, 254-264.	1.8	15
63	Laboratory scale studies on simulated underground coal gasification of high ash coals for carbon-neutral power generation. Energy, 2012, 46, 351-358.	4.5	46
64	Flame structure investigations of oxy-fuel combustion. Fuel, 2012, 93, 52-58.	3.4	28
65	Experimental studies of flame extinction in a swirl-stabilized oxy-fuel burner. Fuel, 2012, 93, 75-81.	3.4	10
66	Integration of underground coal gasification with a solid oxide fuel cell system for clean coal utilization. International Journal of Hydrogen Energy, 2012, 37, 1677-1688.	3.8	49
67	Underground coal-air gasification based solid oxide fuel cell system. Applied Energy, 2012, 94, 406-414.	5.1	25
68	CFD analysis of dense gas dispersion in indoor environment for risk assessment and risk mitigation. Journal of Hazardous Materials, 2012, 209-210, 177-185.	6.5	76
69	Evaluation of the Effect of the Concentration of CO ₂ on the Overall Reactivity of Drop Tube Furnace Derived Indian Sub-bituminous Coal Chars during CO ₂ /O ₂ Combustion. Industrial & Description of Computation (Computation of Computation of Compu	1.8	11
70	Investigation of High-Frequency, High-Intensity Ultrasonics for Size Reduction and Washing of Coal in Aqueous Medium. Industrial & Engineering Chemistry Research, 2011, 50, 13210-13219.	1.8	35
71	Simulation of cavity formation in underground coal gasification using bore hole combustion experiments. Energy, 2011, 36, 5854-5864.	4.5	61
72	Cross-over and performance modeling of liquid-feed Polymer Electrolyte Membrane Direct Ethanol Fuel Cells. International Journal of Hydrogen Energy, 2011, 36, 14648-14658.	3.8	32

#	Article	IF	Citations
73	Micro-kinetic modeling of NH3 decomposition on Ni and its application to solid oxide fuel cells. Chemical Engineering Science, 2011, 66, 5184-5191.	1.9	48
74	On the occurrence of two-stage combustion in alkali metals. Combustion and Flame, 2011, 158, 1000-1007.	2.8	10
75	Feasibility of using ultrasound-assisted process for sulfur and ash removal from coal. Chemical Engineering and Processing: Process Intensification, 2011, 50, 236-246.	1.8	45
76	Numerical study of on-board fuel reforming in a catalytic plate reactor for solid-oxide fuel cells. Chemical Engineering Science, 2011, 66, 490-498.	1.9	8
77	An improved serpentine flow field with enhanced cross-flow for fuel cell applications. International Journal of Hydrogen Energy, 2011, 36, 6067-6072.	3.8	64
78	Ultrasonic coal-wash for de-sulfurization. Ultrasonics Sonochemistry, 2011, 18, 718-726.	3.8	59
79	Steam-moderated oxy-fuel combustion. Energy Conversion and Management, 2010, 51, 1981-1988.	4.4	122
80	Effect of air flow on liquid water transport through a hydrophobic gas diffusion layer of a polymer electrolyte membrane fuel cell. International Journal of Hydrogen Energy, 2010, 35, 6872-6886.	3.8	34
81	Experimental studies on burning behaviour of liquid sodium in a shallow pool. Nuclear Engineering and Design, 2010, 240, 3462-3466.	0.8	7
82	Flame structure and NO generation in oxy-fuel combustion at high pressures. Energy Conversion and Management, 2009, 50, 1116-1123.	4.4	34
83	Comprehensive one-dimensional, semi-analytical, mathematical model for liquid-feed polymer electrolyte membrane direct methanol fuel cells. Journal of Power Sources, 2009, 188, 367-378.	4.0	39
84	Dynamics of liquid sodium pool spreading under sodium fire conditions. Nuclear Engineering and Design, 2009, 239, 1354-1361.	0.8	10
85	A hydrodynamic network model for interdigitated flow fields. International Journal of Hydrogen Energy, 2009, 34, 8289-8301.	3.8	34
86	Convective heat transfer in single-phase flow in a vertical tube subjected to axial low frequency oscillations. Heat and Mass Transfer, 2008, 44, 857-864.	1.2	61
87	Flow and pressure drop fluctuations in a vertical tube subject to low frequency oscillations. Nuclear Engineering and Design, 2008, 238, 178-187.	0.8	101
88	Effect of channel-to-channel cross-flow on local flooding in serpentine flow-fields. Journal of Power Sources, 2008, 180, 227-231.	4.0	39
89	A reduced efficiency approach-based process model for a circulating air classifier. Chemical Engineering and Processing: Process Intensification, 2008, 47, 1887-1900.	1.8	13
90	Equilibrium considerations in aerosol formation during sodium combustion. Nuclear Engineering and Design, 2008, 238, 2739-2745.	0.8	8

#	Article	IF	Citations
91	Optimization of a Coal-Fired Furnace for Oxy Fuel Combustion. , 2008, , .		2
92	Shape Optimization of Power Plant Ducting Using CFD., 2008,,.		0
93	A New Stable Operating Regime for Oxyfuel Combustion. , 2008, , .		2
94	Burning Profile of High Ash Indian Coals in Oxy-Fuel Environment. , 2008, , .		4
95	Energy Considerations in the Spreading of LNG on Sea Water. , 2008, , .		0
96	Simplified Model to Predict Incipient Flooding/Dehydration in Proton Exchange Membrane Fuel Cells. Journal of Fuel Cell Science and Technology, 2007, 4, 357-364.	0.8	2
97	An Eulerian/Lagrangian study of solid suspension in stirred tanks. AICHE Journal, 2007, 53, 2461-2469.	1.8	22
98	Pressure drop studies on two-phase flow in a uniformly heated vertical tube at pressures up to the critical point. International Journal of Heat and Mass Transfer, 2007, 50, 1879-1891.	2.5	11
99	Assessment of the effect of high ash content in pulverized coal combustion. Applied Mathematical Modelling, 2007, 31, 934-953.	2.2	51
100	Studies on critical heat flux in flow boiling at near critical pressures. International Journal of Heat and Mass Transfer, 2006, 49, 259-268.	2.5	18
101	Pressure drop and flow distribution in multiple parallel-channel configurations used in proton-exchange membrane fuel cell stacks. Journal of Power Sources, 2006, 157, 358-367.	4.0	112
102	Flow maldistribution in interdigitated channels used in PEM fuel cells. Journal of Power Sources, 2006, 159, 595-604.	4.0	29
103	CHURN FLOW. , 2006, c, .		0
104	Flow distribution and pressure drop in parallel-channel configurations of planar fuel cells. Journal of Power Sources, 2005, 144, 94-106.	4.0	141
105	Calculation of dry out and post-dry out heat transfer in rod bundles using a three field model. International Journal of Heat and Mass Transfer, 2005, 48, 1825-1839.	2.5	24
106	Experimental and numerical study of a rotating wheel air classifier. AICHE Journal, 2005, 51, 776-790.	1.8	38
107	On axial coherence of interfacial waves in countercurrent flow. AICHE Journal, 2005, 51, 2098-2102.	1.8	0
108	Effect of Taylor vortices on mass transfer from a rotating cylinder. AICHE Journal, 2005, 51, 2885-2898.	1.8	15

#	Article	IF	CITATIONS
109	An Improved Model to Predict Flooding/Dehydration in PEM Fuel Cells. , 2005, , .		O
110	Pressure Losses and Flow Maldistribution in Ducts with Sharp Bends. Chemical Engineering Research and Design, 2004, 82, 321-331.	2.7	31
111	The case of an oscillating manometer with variable density and dissipation: experimental and numerical study. Nuclear Engineering and Design, 2004, 229, 59-73.	0.8	3
112	Prediction of dryout and post-dryout heat transfer at high pressures using a one-dimensional three-fluid model. International Journal of Heat and Mass Transfer, 2004, 47, 4895-4910.	2.5	56
113	Pressure losses in laminar flow through serpentine channels in fuel cell stacks. Journal of Power Sources, 2004, 138, 1-13.	4.0	133
114	A multidimensional model for annular gas–liquid flow. Chemical Engineering Science, 2004, 59, 3577-3589.	1.9	34
115	Computational Study of Particle-Eddy Interaction in Sedimentation Tanks. Journal of Environmental Engineering, ASCE, 2004, 130, 37-49.	0.7	42
116	Mixing of power-law fluids using anchors: Metzner-Otto concept revisited. AICHE Journal, 2003, 49, 30-40.	1.8	36
117	Mixing of pseudoplastic fluids using helical ribbon impellers. AICHE Journal, 2003, 49, 2768-2772.	1.8	23
118	Investigation of postflooding conditions in countercurrent gas–liquid flow. AICHE Journal, 2002, 48, 212-220.	1.8	7
119	Experimental study of air–water countercurrent annular flow under post-flooding conditions. International Journal of Multiphase Flow, 2002, 28, 51-67.	1.6	13
120	CFD Study of Power and Mixing Time for Paddle Mixing in Unbaffled Vessels. Chemical Engineering Research and Design, 2002, 80, 482-498.	2.7	77
121	Effect of tube diameter on flooding. International Journal of Multiphase Flow, 2001, 27, 797-816.	1.6	49
122	Flow development in vertical annular flow. Chemical Engineering Science, 2001, 56, 3221-3235.	1.9	105
123	Hydrodynamics of jet mixing in vessels. Chemical Engineering Science, 2001, 56, 193-210.	1.9	79
124	Hydrodynamics and heat transfer in wavy annular gas-liquid flow: a computational fluid dynamics study. International Journal of Heat and Mass Transfer, 1997, 40, 2445-2460.	2.5	119
125	On the nature of ephemeral waves in vertical annular flow. International Journal of Multiphase Flow, 1996, 22, 325-333.	1.6	23
126	Response of turbulent flow to abrupt changes in surface roughness and its relevance in horizontal annular flow. Applied Mathematical Modelling, 1996, 20, 244-251.	2.2	6

#	Article	IF	Citations
127	Theoretical investigation of the diameter effect on flooding in countercurrent flow. International Journal of Multiphase Flow, 1996, 22, 307-324.	1.6	54
128	Hydrodynamics and heat transfer of wavy thin film flow. International Journal of Heat and Mass Transfer, 1996, 40, 179-190.	2.5	63
129	TURBULENT FLOW IN A PIPE WITH INTERMITTENT ROUGH PATCHES: AN ANALOGUE OF ANNULAR TWO-PHASE FLOW. Chemical Engineering Communications, 1996, 141-142, 237-259.	1.5	4
130	CHURN FLOW. Multiphase Science and Technology, 1994, 8, 471-521.	0.2	13
131	To churn or not to churn. International Journal of Multiphase Flow, 1993, 19, 527-529.	1.6	58
132	Observation of flooding in the taylor bubble of co-current upwards slug flow. International Journal of Multiphase Flow, 1993, 19, 531-534.	1.6	25
133	Prediction of film inversion in two-phase flow in coiled tubes. Journal of Fluid Mechanics, 1992, 236, 497-511.	1.4	68
134	Prediction of the slug-to-churn flow transition in vertical two-phase flow. International Journal of Multiphase Flow, 1992, 18, 847-860.	1.6	195
135	A numerical study of bifurcation in laminar flow in curved ducts. International Journal for Numerical Methods in Fluids, 1992, 14, 253-266.	0.9	9
136	On the paradox concerning friction factor ratio in laminar flow in coils. Proceedings of the Royal Society A, 1991, 432, 291-299.	1.0	8
137	Prediction of onset of nucleate boiling, net vapour generation and subcooled CHF in coiled tubes. Heat and Mass Transfer, 1991, 26, 301-305.	0.2	4
138	Fluid flow in curved ducts. International Journal for Numerical Methods in Fluids, 1990, 10, 569-589.	0.9	9
139	Characterization of dryout in helical coils. International Journal of Heat and Mass Transfer, 1990, 33, 1451-1463.	2.5	92
140	Structure of thin liquid films in gas-liquid horizontal flow. International Journal of Multiphase Flow, 1990, 16, 951-957.	1.6	65
141	Time-dependent behaviour of the liquid film in horizontal annular flow. International Journal of Multiphase Flow, 1990, 16, 1097-1116.	1.6	59
142	High-quality dryout in helical coils. Nuclear Engineering and Design, 1990, 122, 105-118.	0.8	23
143	The prediction of turbulent flows over roughened surfaces and its application to interpretation of mechanisms of horizontal annular flow. Proceedings of the Royal Society A, 1990, 431, 71-88.	1.0	16
144	Preliminary Analysis of a Small, Inherently Safe Boiling Water Reactor. Nuclear Technology, 1987, 79, 51-65.	0.7	1

#	Article	IF	CITATIONS
145	Numerical Simulation of Coal Combustion in a Tangential Pulverized Boiler: Effect of Burner Vertical Tilt Angle. Arabian Journal for Science and Engineering, 0 , 1 .	1.7	5