
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1882279/publications.pdf Version: 2024-02-01

<u> Valentin CeÃ+a</u>

#	Article	IF	CITATIONS
1	Engineered Neutral Phosphorous Dendrimers Protect Mouse Cortical Neurons and Brain Organoids from Excitotoxic Death. International Journal of Molecular Sciences, 2022, 23, 4391.	1.8	6
2	LRRK2 and Proteostasis in Parkinson's Disease. International Journal of Molecular Sciences, 2022, 23, 6808.	1.8	5
3	In vivo therapeutic applications of phosphorus dendrimers: state of the art. Drug Discovery Today, 2021, 26, 677-689.	3.2	23
4	Synthesis, self-assembly and anticancer drug encapsulation and delivery properties of cyclodextrin-based giant amphiphiles. Carbohydrate Polymers, 2021, 252, 117135.	5.1	23
5	Engineered non-invasive functionalized dendrimer/dendron-entrapped/complexed gold nanoparticles as a novel class of theranostic (radio)pharmaceuticals in cancer therapy. Journal of Controlled Release, 2021, 332, 346-366.	4.8	29
6	Click Synthesis of Size- and Shape-Tunable Star Polymers with Functional Macrocyclic Cores for Synergistic DNA Complexation and Delivery. Biomacromolecules, 2020, 21, 5173-5188.	2.6	9
7	Nanoparticle-Delivered HIV Peptides to Dendritic Cells a Promising Approach to Generate a Therapeutic Vaccine. Pharmaceutics, 2020, 12, 656.	2.0	12
8	Nanoparticle-mediated therapeutic compounds delivery to glioblastoma. Expert Opinion on Drug Delivery, 2020, 17, 1541-1554.	2.4	16
9	Peptides, proteins and nanotechnology: a promising synergy for breast cancer targeting and treatment. Expert Opinion on Drug Delivery, 2020, 17, 1597-1613.	2.4	22
10	Dendrimers toward Translational Nanotherapeutics: Concise Key Step Analysis. Bioconjugate Chemistry, 2020, 31, 2060-2071.	1.8	38
11	Cyclodextrin-Based Nanostructure Efficiently Delivers siRNA to Glioblastoma Cells Preferentially via Macropinocytosis. International Journal of Molecular Sciences, 2020, 21, 9306.	1.8	9
12	Endocytosis: The Nanoparticle and Submicron Nanocompounds Gateway into the Cell. Pharmaceutics, 2020, 12, 371.	2.0	248
13	Dendrimer– and polymeric nanoparticle–aptamer bioconjugates as nonviral delivery systems: a new approach in medicine. Drug Discovery Today, 2020, 25, 1065-1073.	3.2	36
14	Exploration of biomedical dendrimer space based on in-vitro physicochemical parameters: key factor analysis (Part 1). Drug Discovery Today, 2019, 24, 1176-1183.	3.2	32
15	Exploration of biomedical dendrimer space based on in-vivo physicochemical parameters: Key factor analysis (Part 2). Drug Discovery Today, 2019, 24, 1184-1192.	3.2	29
16	Assessment of doxorubicin delivery devices based on tailored bare polycaprolactone against glioblastoma. International Journal of Pharmaceutics, 2019, 558, 110-119.	2.6	19
17	The Delivery Challenge in Neurodegenerative Disorders: The Nanoparticles Role in Alzheimer's Disease Therapeutics and Diagnostics. Pharmaceutics, 2018, 10, 190.	2.0	28
18	Nanoparticle crossing of blood–brain barrier: a road to new therapeutic approaches to central nervous system diseases. Nanomedicine, 2018, 13, 1513-1516.	1.7	152

#	Article	IF	CITATIONS
19	Evaluation of Amino-Functional Polyester Dendrimers Based on Bis-MPA as Nonviral Vectors for siRNA Delivery. Molecules, 2018, 23, 2028.	1.7	38
20	Synthesis, characterization, DNA interactions and antiproliferative activity on glioblastoma of iminopyridine platinum(II) chelate complexes. Journal of Inorganic Biochemistry, 2017, 168, 46-54.	1.5	9
21	Aminophosphine ligands as a privileged platform for development of antitumoral ruthenium(<scp>ii</scp>) arene complexes. Dalton Transactions, 2017, 46, 16113-16125.	1.6	27
22	Use of nanoparticles for glioblastoma treatment: a new approach. Nanomedicine, 2017, 12, 2533-2554.	1.7	25
23	Neutral high-generation phosphorus dendrimers inhibit macrophage-mediated inflammatory response in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7660-E7669.	3.3	33
24	Exploring the in vivo toxicity of nanoparticles. Canadian Journal of Chemistry, 2017, 95, 917-926.	0.6	6
25	Molecular determinants for cyclo-oligosaccharide-based nanoparticle-mediated effective siRNA transfection. Nanomedicine, 2017, 12, 1607-1621.	1.7	13
26	Docetaxel-Loaded Nanoparticles Assembled from β-Cyclodextrin/Calixarene Giant Surfactants: Physicochemical Properties and Cytotoxic Effect in Prostate Cancer and Glioblastoma Cells. Frontiers in Pharmacology, 2017, 8, 249.	1.6	37
27	Nanoparticles for brain-specific drug and genetic material delivery, imaging and diagnosis. Nanomedicine, 2016, 11, 833-849.	1.7	95
28	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
29	Phenyl-guanidine derivatives as potential therapeutic agents for glioblastoma multiforme: catalytic syntheses, cytotoxic effects and DNA affinity. RSC Advances, 2016, 6, 8267-8276.	1.7	9
30	Second Generation Amphiphilic Poly-Lysine Dendrons Inhibit Glioblastoma Cell Proliferation without Toxicity for Neurons or Astrocytes. PLoS ONE, 2016, 11, e0165704.	1.1	32
31	The endoplasmic reticulum stress and the <scp>HIF</scp> â€1 signalling pathways are involved in the neuronal damage caused by chemical hypoxia. British Journal of Pharmacology, 2015, 172, 2838-2851.	2.7	41
32	Unbinding forces and energies between a siRNA molecule and a dendrimer measured by force spectroscopy. Nanoscale, 2015, 7, 20267-20276.	2.8	18
33	Differential Neuroprotective Effects of 5′-Deoxy-5′-Methylthioadenosine. PLoS ONE, 2014, 9, e90671.	1.1	13
34	PPV–PAMAM Hybrid Dendrimers: Self-Assembly and Stabilization of Gold Nanoparticles. Macromolecules, 2013, 46, 7316-7324.	2.2	21
35	Knocking Down HMGB1 Using Dendrimer-Delivered siRNA Unveils Its Key Role in NMDA-Induced Autophagy in Rat Cortical Neurons. Pharmaceutical Research, 2013, 30, 2584-2595.	1.7	24
36	Inhibition of the canonical Wnt pathway by high glucose can be reversed by parathyroid hormoneâ€related protein in osteoblastic cells. Journal of Cellular Biochemistry, 2013, 114, 1908-1916.	1.2	35

#	Article	IF	CITATIONS
37	Dendrimers as Vectors for Small Interfering RNA Transfection in the Nervous System. , 2013, , 134-147.		0
38	Nicotinic Receptors in Neurodegeneration. Current Neuropharmacology, 2013, 11, 298-314.	1.4	92
39	Inhibition of p42 MAPK using a nonviral vector-delivered siRNA potentiates the anti-tumor effect of metformin in prostate cancer cells. Nanomedicine, 2012, 7, 493-506.	1.7	42
40	Enhanced docetaxel-mediated cytotoxicity in human prostate cancer cells through knockdown of cofilin-1 by carbon nanohorn delivered siRNA. Biomaterials, 2012, 33, 8152-8159.	5.7	45
41	The Use of Nanoparticles for Gene Therapy in the Nervous System. Journal of Alzheimer's Disease, 2012, 31, 697-710.	1.2	56
42	Acetaminophen Induces Human Neuroblastoma Cell Death through NFKB Activation. PLoS ONE, 2012, 7, e50160.	1.1	36
43	Development of Microwaveâ€Assisted Reactions for PAMAM Dendrimer Synthesis. European Journal of Organic Chemistry, 2012, 2012, 2331-2337.	1.2	8
44	Dendrimerâ€mediated siRNA delivery knocks down Beclin 1 and potentiates NMDAâ€mediated toxicity in rat cortical neurons. Journal of Neurochemistry, 2012, 120, 259-268.	2.1	39
45	Cofilin activation mediates Bax translocation to mitochondria during excitotoxic neuronal death. Journal of Neurochemistry, 2012, 120, 515-527.	2.1	43
46	Carbon nanohorns functionalized with polyamidoamine dendrimers as efficient biocarrier materials for gene therapy. Carbon, 2012, 50, 2832-2844.	5.4	58
47	HIF-1α is neuroprotective during the early phases of mild hypoxia in rat cortical neurons. Experimental Neurology, 2012, 233, 543-554.	2.0	41
48	Aliskiren Prevents the Toxic Effects of Peritoneal Dialysis Fluids during Chronic Dialysis in Rats. PLoS ONE, 2012, 7, e36268.	1.1	8
49	Role of Generation, Architecture, pH and Ionic Strength on Successful siRNA Delivery and Transfection by Hybrid PPV-PAMAM Dendrimers. Current Medicinal Chemistry, 2012, 19, 4929-4941.	1.2	24
50	Dendrimers As Vectors for Genetic Material Delivery to the Nervous System. Current Medicinal Chemistry, 2012, 19, 5101-5108.	1.2	20
51	Efficient, Non-Toxic Hybrid PPV-PAMAM Dendrimer as a Gene Carrier for Neuronal Cells. Biomacromolecules, 2011, 12, 1205-1213.	2.6	47
52	Barriers to Non-Viral Vector-Mediated Gene Delivery in the Nervous System. Pharmaceutical Research, 2011, 28, 1843-1858.	1.7	157
53	Involvement of lipid rafts in the localization and dysfunction effect of the antitumor ether phospholipid edelfosine in mitochondria. Cell Death and Disease, 2011, 2, e158-e158.	2.7	56
54	Atorvastatin Reduces High Glucose Toxicity in Rat Peritoneal Mesothelial Cells. Peritoneal Dialysis International, 2011, 31, 325-331.	1.1	8

VALENTIN CEñA

#	Article	IF	CITATIONS
55	Bcl-xL Blocks a Mitochondrial Inner Membrane Channel and Prevents Ca2+ Overload-Mediated Cell Death. PLoS ONE, 2011, 6, e20423.	1.1	37
56	Acetaminophen Induces Apoptosis in Rat Cortical Neurons. PLoS ONE, 2010, 5, e15360.	1.1	71
57	Mechanisms of action of Methylthioadenosine: pathways implicated in neuroprotection in models of Multiple Sclerosis and other neurological diseases. Journal of Translational Medicine, 2010, 8, .	1.8	0
58	Nonviral vectors for the delivery of small interfering RNAs to the CNS. Nanomedicine, 2010, 5, 1219-1236.	1.7	63
59	Highly Efficient Transfection of Rat Cortical Neurons Using Carbosilane Dendrimers Unveils a Neuroprotective Role for HIF-11± in Early Chemical Hypoxia-Mediated Neurotoxicity. Pharmaceutical Research, 2009, 26, 1181-1191.	1.7	63
60	Brain-derived neurotrophic factor modulates the severity of cognitive alterations induced by mutant huntingtin: Involvement of phospholipaseCγ activity and glutamate receptor expression. Neuroscience, 2009, 158, 1234-1250.	1.1	98
61	Increased NR2A expression and prolonged decay of NMDA-induced calcium transient in cerebellum of TgDyrk1A mice, a mouse model of Down syndrome. Neurobiology of Disease, 2008, 32, 377-384.	2.1	41
62	D1 but not D5 Dopamine Receptors Are Critical for LTP, Spatial Learning, and LTP-Induced arc and zif268 Expression in the Hippocampus. Cerebral Cortex, 2008, 18, 1-12.	1.6	178
63	G Protein-coupled Receptor Kinase 2-mediated Phosphorylation of Downstream Regulatory Element Antagonist Modulator Regulates Membrane Trafficking of Kv4.2 Potassium Channel. Journal of Biological Chemistry, 2007, 282, 1205-1215.	1.6	55
64	Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission. Glia, 2007, 55, 36-45.	2.5	182
65	Acetaminophen potentiates staurosporine-induced death in a human neuroblastoma cell line. British Journal of Pharmacology, 2007, 150, 577-585.	2.7	35
66	Lifeguard/neuronal membrane protein 35 regulates Fas ligand-mediated apoptosis in neurons via microdomain recruitment. Journal of Neurochemistry, 2007, 103, 070717084306001-???.	2.1	67
67	Cholinergic modulation of status epilepticus in the rat barrel field region of primary somatosensory cortex. Experimental Neurology, 2005, 196, 120-125.	2.0	3
68	Involvement of mitochondrial potential and calcium buffering capacity in minocycline cytoprotective actions. Neuroscience, 2005, 133, 959-967.	1.1	59
69	Glial Cell Line-derived Neurotrophic Factor Increases Intracellular Calcium Concentration. Journal of Biological Chemistry, 2004, 279, 6132-6142.	1.6	76
70	Glitazones Differentially Regulate Primary Astrocyte and Glioma Cell Survival. Journal of Biological Chemistry, 2004, 279, 8976-8985.	1.6	115
71	Stressor-related impairment of synaptic transmission in hippocampal slices from α-synuclein knockout mice. European Journal of Neuroscience, 2004, 20, 3085-3091.	1.2	18
72	Bcl-xL blocks mitochondrial multiple conductance channel activation and inhibits 6-OHDA-induced death in SH-SY5Y cells. Journal of Neurochemistry, 2004, 89, 124-133.	2.1	80

#	Article	IF	CITATIONS
73	Adrenal medulla calcium channel population is not conserved in bovine chromaffin cells in culture. Neuroscience, 2004, 128, 99-109.	1.1	18
74	Stroke and Ischemic Insults. , 2004, , 527-535.		0
75	Control mitocondrial de la muerte neuronal y su papel en las enfermedades neurodegenerativas. Journal of Physiology and Biochemistry, 2003, 59, 129-141.	1.3	97
76	Chromaffin cell death induced by 6-hydroxydopamine is independent of mitochondrial swelling and caspase activation. Journal of Neurochemistry, 2003, 84, 1066-1073.	2.1	52
77	Reactive oxygen species induce swelling and cytochrome c release but not transmembrane depolarization in isolated rat brain mitochondria. British Journal of Pharmacology, 2003, 139, 797-804.	2.7	65
78	Role and regulation of p53 in depolarization-induced neuronal death. Neuroscience, 2003, 122, 707-715.	1.1	41
79	Acetylcholinesterase activation in organotypic rat hippocampal slice cultures deprived of oxygen and glucose. Neuroscience Letters, 2003, 348, 123-125.	1.0	13
80	Acetylcholinesterase activity and molecular isoform distribution are altered after focal cerebral ischemia. Molecular Brain Research, 2003, 117, 240-244.	2.5	15
81	Mitochondrial Dysfunction Is Involved in Apoptosis Induced by Serum Withdrawal and Fatty Acids in the β-Cell Line Ins-1. Endocrinology, 2003, 144, 335-345.	1.4	170
82	Gas1 Is Induced during and Participates in Excitotoxic Neuronal Death. Molecular and Cellular Neurosciences, 2002, 19, 417-429.	1.0	39
83	Sequential Treatment of SH-SY5Y Cells with Retinoic Acid and Brain-Derived Neurotrophic Factor Gives Rise to Fully Differentiated, Neurotrophic Factor-Dependent, Human Neuron-Like Cells. Journal of Neurochemistry, 2002, 75, 991-1003.	2.1	649
84	Extracellular Calcium Has Distinct Effects on Fast and Slow Components of the Depolarization-Induced Secretory Response from Chromaffin Cells. Journal of Neurochemistry, 2002, 67, 1056-1062.	2.1	3
85	Superoxide anions mediate veratridine-induced cytochromecrelease and caspase activity in bovine chromaffin cells. British Journal of Pharmacology, 2002, 137, 993-1000.	2.7	39
86	Glutamate N-methyl-d-aspartate receptor blockade prevents induction of GAP-43 after focal ischemia in rats. Neuroscience Letters, 2001, 305, 87-90.	1.0	7
87	An activity-dependent switch from facilitation to inhibition in the control of excitotoxicity by group I metabotropic glutamate receptors. European Journal of Neuroscience, 2001, 13, 1469-1478.	1.2	62
88	Naloxone inhibits nicotine-induced receptor current and catecholamine secretion in bovine chromaffin cells. Brain Research, 2001, 903, 62-65.	1.1	22
89	Veratridine induces apoptotic death in bovine chromaffin cells through superoxide production. British Journal of Pharmacology, 2000, 130, 1496-1504.	2.7	41
90	Group-I metabotropic glutamate receptors: hypotheses to explain their dual role in neurotoxicity and neuroprotection. Neuropharmacology, 1999, 38, 1477-1484.	2.0	153

VALENTIN CEñA

#	Article	IF	CITATIONS
91	Tricyclic antidepressants block cholinergic nicotinic receptors and ATP secretion in bovine chromaffin cells. FEBS Letters, 1997, 418, 39-42.	1.3	25
92	ω-Conotoxin GVIA blocks nicotine-induced catecholamine secretion by blocking the nicotinic receptor-activated inward currents in bovine chromaffin cells. Neuroscience Letters, 1995, 191, 59-62.	1.0	15
93	ï‰-agatoxin IVA blocks nicotinic receptor channels in bovine chromaffin cells. FEBS Letters, 1995, 362, 15-18.	1.3	15
94	Catecholamine secretion, calcium levels and calcium influx in response to membrane depolarization in bovine chromaffin cells. Neuroscience, 1995, 68, 265-272.	1.1	14
95	Catecholamine secretion induced by tetraethylammonium from cultured bovine adrenal chromaffin cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1177, 99-105.	1.9	22
96	Molecular cloning and permanent expression in a neuroblastoma cell line of a fast inactivating potassium channel from bovine adrenal medulla. FEBS Letters, 1992, 308, 283-289.	1.3	17
97	Chromostatin receptors control calcium channel activity in adrenal chromaffin cells Journal of Biological Chemistry, 1992, 267, 407-412.	1.6	34
98	Chromostatin receptors control calcium channel activity in adrenal chromaffin cells. Journal of Biological Chemistry, 1992, 267, 407-12.	1.6	38
99	Pertussis toxin stimulation of catecholamine release from adrenal medullary chromaffin cells: Mechanism may be by direct activation of L-type and G-type calcium channels. Journal of Membrane Biology, 1991, 122, 23-31.	1.0	21
100	Norepinephrine Stimulates Potassium Efflux from Pinealocytes: Evidence for Involvement of Biochemical "AND―Gate Operated by Calcium and Adenosine 3′,5′-Monophosphate*. Endocrinology, 128, 559-569.	199.4,	23
101	Differential expression and enzymatic properties of the Na+,K(+)-ATPase alpha 3 isoenzyme in rat pineal glands Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 1178-1182.	3.3	103
102	Characteristics of Receptor-Operated and Membrane Potential-Dependent ATP Secretion from Adrenal Medullary Chromaffin Cells. Annals of the New York Academy of Sciences, 1990, 603, 311-322.	1.8	8
103	Kinetic characteristics of calcium-dependent, cholinergic receptor controlled ATP secretion from adrenal medullary chromaffin cells. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1023, 213-222.	1.4	17
104	Effects of calcium and bay K-8644 on calcium currents in adrenal medullary chromaffin cells. Journal of Membrane Biology, 1989, 112, 255-265.	1.0	40
105	Ouabain induces acetylcholine release from pure cholinergic synaptosomes independently of extracellular calcium concentration. Neurochemical Research, 1988, 13, 1035-1041.	1.6	15
106	[68] Hydroxyindole O-methyltransferase. Methods in Enzymology, 1987, 142, 590-596.	0.4	50
107	Cardiac glycosides stimulate phospholipase C activity in rat pinealocytes. Biochemical and Biophysical Research Communications, 1987, 142, 819-825.	1.0	13
108	Inhibition of adrenomedullary catecholamine release by propranolol isomers and clonidine involving mechanisms unrelated to adrenoceptors. British Journal of Pharmacology, 1987, 92, 795-801.	2.7	20

#	Article	IF	CITATIONS
109	Developmental study of ouabain inhibition of adrenergic induction of rat pineal serotonin N-acetyltransferase (EC 2.3.1.87). Journal of Biological Chemistry, 1987, 262, 14467-71.	1.6	10
110	Characterization of the alpha +-like Na+,K+-ATPase which mediates ouabain inhibition of adrenergic induction of N-acetyltransferase (EC 2.3.1.87) activity: studies with isolated pinealocytes. Molecular Pharmacology, 1987, 32, 792-7.	1.0	8
111	Presence of a noradrenaline uptake system on a ligated cat sympathetic nerve Journal of Physiology, 1986, 372, 351-362.	1.3	2
112	Retinal S-antigen: immunocytochemical and immunochemical studies on distribution in animal photoreceptors and pineal organs. Experimental Biology, 1986, 45, 15-25.	0.1	21
113	Effect of the dihydropyridine Bay K 8644 on the release of [³ H]â€noradrenaline from the rat isolated vas deferens. British Journal of Pharmacology, 1985, 85, 691-696.	2.7	22
114	Ion dependence of the release of noradrenaline by tetraethylammonium and 4â€aminopyridine from cat splenic slices. British Journal of Pharmacology, 1985, 84, 299-308.	2.7	5
115	Uptake of [³ H]â€nicotine and [³ H]â€noradrenaline by cultured chromaffin cells. British Journal of Pharmacology, 1984, 81, 119-123.	2.7	12
116	Orthograde and retrograde axonal transport of calmodulin in a cat noradrenergic neurone. British Journal of Pharmacology, 1984, 82, 143-149.	2.7	3
117	Pharmacological dissection of receptor-associated and voltage-sensitive ionic channels involved in catecholamine release. Neuroscience, 1983, 10, 1455-1462.	1.1	150
118	Presence and axonal transport of cholinoceptor, but not adrenoceptor sites on a cat noradrenergic neurone. Journal of Physiology, 1982, 333, 595-618.	1.3	24
119	Effects of the cardiotonic drug ARL-115 on the release of noradrenaline from the cat atrium, the binding of 3H-ouabain to plasma membranes and the movements of calcium in mitochondria. Naunyn-Schmiedeberg's Archives of Pharmacology, 1982, 320, 255-259.	1.4	2
120	Release of noradrenaline from the ligated cat hypogastric nerve. European Journal of Pharmacology, 1980, 61, 183-186.	1.7	12