Jeong Chan Joo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/188208/publications.pdf

Version: 2024-02-01

83 papers 2,744 citations

30 h-index 197818 49 g-index

88 all docs 88 docs citations

88 times ranked 2656 citing authors

#	Article	IF	CITATIONS
1	Recent advances in the microbial production of C4 alcohols by metabolically engineered microorganisms. Biotechnology Journal, 2022, 17, e2000451.	3.5	5
2	Recent progress and challenges in biological degradation and biotechnological valorization of lignin as an emerging source of bioenergy: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 2022, 157, 112025.	16.4	32
3	Development of a bio-chemical route to C5 plasticizer synthesis using glutaric acid produced by metabolically engineered <i>Corynebacterium glutamicum</i> . Green Chemistry, 2022, 24, 1590-1602.	9.0	6
4	Microbial cell factories for the production of three-carbon backbone organic acids from agro-industrial wastes. Bioresource Technology, 2022, 349, 126797.	9.6	10
5	Consolidated microbial production of four-, five-, and six-carbon organic acids from crop residues: Current status and perspectives. Bioresource Technology, 2022, 351, 127001.	9.6	11
6	Microbial production of 2-pyrone-4,6-dicarboxylic acid from lignin derivatives in an engineered Pseudomonas putida and its application for the synthesis of bio-based polyester. Bioresource Technology, 2022, 352, 127106.	9.6	15
7	Development of a glutaric acid production system equipped with stepwise feeding of monosodium glutamate by whole-cell bioconversion. Enzyme and Microbial Technology, 2022, 159, 110053.	3.2	3
8	One-Pot Chemo-bioprocess of PET Depolymerization and Recycling Enabled by a Biocompatible Catalyst, Betaine. ACS Catalysis, 2021, 11, 3996-4008.	11.2	58
9	Improvement of polyhydroxybutyrate (PHB) plate-based screening method for PHB degrading bacteria using cell-grown amorphous PHB and recovered by sodium dodecyl sulfate (SDS). International Journal of Biological Macromolecules, 2021, 177, 413-421.	7.5	24
10	Recent progress in metabolic engineering of Corynebacterium glutamicum for the production of C4, C5, and C6 chemicals. Korean Journal of Chemical Engineering, 2021, 38, 1291-1307.	2.7	6
11	Biosynthesis of polyhydroxyalkanoates from sugarcane molasses by recombinant Ralstonia eutropha strains. Korean Journal of Chemical Engineering, 2021, 38, 1452-1459.	2.7	15
12	Application of l-glutamate oxidase from Streptomyces sp. X119-6 with catalase (KatE) to whole-cell systems for glutaric acid production in Escherichia coli. Korean Journal of Chemical Engineering, 2021, 38, 2106-2112.	2.7	4
13	Chemoâ€Biological Upcycling of Poly(ethylene terephthalate) to Multifunctional Coating Materials. ChemSusChem, 2021, 14, 4251-4259.	6.8	36
14	Improving the organic solvent resistance of lipase a from Bacillus subtilis in water–ethanol solvent through rational surface engineering. Bioresource Technology, 2021, 337, 125394.	9.6	11
15	Chemoautotroph Cupriavidus necator as a potential game-changer for global warming and plastic waste problem: A review. Bioresource Technology, 2021, 340, 125693.	9.6	50
16	Improving the catalytic performance of xylanase from Bacillus circulans through structure-based rational design. Bioresource Technology, 2021, 340, 125737.	9.6	19
17	Fermentative High-Level Production of 5-Hydroxyvaleric Acid by Metabolically Engineered <i>Corynebacterium glutamicum</i> ACS Sustainable Chemistry and Engineering, 2021, 9, 2523-2533.	6.7	21
18	Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metabolic Engineering, 2020, 58, 47-81.	7.0	138

#	Article	IF	CITATIONS
19	Selective extraction of glutaric acid from biological production systems using n-butanol. Journal of Industrial and Engineering Chemistry, 2020, 82, 98-104.	5.8	14
20	Development of Metabolically Engineered <i>Corynebacterium glutamicum</i> for Enhanced Production of Cadaverine and Its Use for the Synthesis of Bio-Polyamide 510. ACS Sustainable Chemistry and Engineering, 2020, 8, 129-138.	6.7	23
21	Rational engineering of 2-deoxyribose-5-phosphate aldolases for the biosynthesis of (R)-1,3-butanediol. Journal of Biological Chemistry, 2020, 295, 597-609.	3.4	16
22	Recent Advances in Systems Metabolic Engineering Strategies for the Production of Biopolymers. Biotechnology and Bioprocess Engineering, 2020, 25, 848-861.	2.6	21
23	Recent Advances in Sustainable Plastic Upcycling and Biopolymers. Biotechnology Journal, 2020, 15, e1900489.	3.5	92
24	A highly active carboxylic acid reductase from Mycobacterium abscessus for biocatalytic reduction of vanillic acid to vanillin. Biochemical Engineering Journal, 2020, 161, 107683.	3.6	14
25	Biosynthesis of polyhydroxyalkanoates from sucrose by metabolically engineered Escherichia coli strains. International Journal of Biological Macromolecules, 2020, 149, 593-599.	7.5	30
26	A chemo-microbial hybrid process for the production of 2-pyrone-4,6-dicarboxylic acid as a promising bioplastic monomer from PET waste. Green Chemistry, 2020, 22, 3461-3469.	9.0	36
27	Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical. Metabolic Engineering, 2019, 51, 99-109.	7.0	50
28	High-Level Conversion of l-lysine into Cadaverine by Escherichia coli Whole Cell Biocatalyst Expressing Hafnia alvei l-lysine Decarboxylase. Polymers, 2019, 11, 1184.	4.5	21
29	Enzymatic Synthesis of D-pipecolic Acid by Engineering the Substrate Specificity of Trypanosoma cruzi Proline Racemase and Its Molecular Docking Study. Biotechnology and Bioprocess Engineering, 2019, 24, 215-222.	2.6	5
30	Biological Valorization of Poly(ethylene terephthalate) Monomers for Upcycling Waste PET. ACS Sustainable Chemistry and Engineering, 2019, 7, 19396-19406.	6.7	141
31	Recent Advances in the Metabolic Engineering of Klebsiella pneumoniae: A Potential Platform Microorganism for Biorefineries. Biotechnology and Bioprocess Engineering, 2019, 24, 48-64.	2.6	34
32	Enhanced production of glutaric acid by NADH oxidase and GabDâ€reinforced bioconversion from <scp>l</scp> â€lysine. Biotechnology and Bioengineering, 2019, 116, 333-341.	3.3	20
33	Metabolic Engineering of <i>Corynebacterium glutamicum</i> for the High-Level Production of Cadaverine That Can Be Used for the Synthesis of Biopolyamide 510. ACS Sustainable Chemistry and Engineering, 2018, 6, 5296-5305.	6.7	83
34	Characterization of a Whole-Cell Biotransformation Using a Constitutive Lysine Decarboxylase from Escherichia coli for the High-Level Production of Cadaverine from Industrial Grade I-Lysine. Applied Biochemistry and Biotechnology, 2018, 185, 909-924.	2.9	21
35	Selective recovery of cadaverine from lysine decarboxylase bioconversion solution using methyl ethyl ketone. Journal of Industrial and Engineering Chemistry, 2018, 64, 167-172.	5.8	9
36	Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery. Applied Microbiology and Biotechnology, 2018, 102, 3915-3937.	3.6	60

#	Article	IF	CITATIONS
37	Construction of a Vitreoscilla Hemoglobin Promoter-Based Tunable Expression System for Corynebacterium glutamicum. Catalysts, 2018, 8, 561.	3.5	10
38	Engineering a short, aldolase-based pathway for (R)-1,3-butanediol production in Escherichia coli. Metabolic Engineering, 2018, 48, 13-24.	7.0	49
39	Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum strains from empty fruit bunch biosugar solution. Microbial Cell Factories, 2018, 17, 129.	4.0	42
40	Recent advances in metabolic engineering of <i>Corynebacterium glutamicum</i> as a potential platform microorganism for biorefinery. Biofuels, Bioproducts and Biorefining, 2018, 12, 899-925.	3.7	34
41	Novel Aldo-Keto Reductases for the Biocatalytic Conversion of 3-Hydroxybutanal to 1,3-Butanediol: Structural and Biochemical Studies. Applied and Environmental Microbiology, 2017, 83, .	3.1	24
42	Production of 5-aminovaleric acid in recombinant Corynebacterium glutamicum strains from a Miscanthus hydrolysate solution prepared by a newly developed Miscanthus hydrolysis process. Bioresource Technology, 2017, 245, 1692-1700.	9.6	45
43	Biosynthesis of 2â€Hydroxyacidâ€Containing Polyhydroxyalkanoates by Employing butyrylâ€CoA Transferases in Metabolically Engineered <i>Escherichia coli</i> . Biotechnology Journal, 2017, 12, 1700116.	3.5	18
44	Exploring Bacterial Carboxylate Reductases for the Reduction of Bifunctional Carboxylic Acids. Biotechnology Journal, 2017, 12, 1600751.	3.5	74
45	Alkene hydrogenation activity of enoate reductases for an environmentally benign biosynthesis of adipic acid. Chemical Science, 2017, 8, 1406-1413.	7.4	77
46	Enhancement of Lysine Production in Recombinant Corynebacterium glutamicum through Expression of Deinococcus radiodurans pprM and dr1558 Genes. Microbiology and Biotechnology Letters, 2017, 45, 271-275.	0.4	3
47	Improving the synthesis of phenolic polymer using Coprinus cinereus peroxidase mutant Phe230Ala. Enzyme and Microbial Technology, 2016, 87-88, 37-43.	3.2	3
48	Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid. Microbial Cell Factories, 2016, 15, 174.	4.0	96
49	Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution. Microbial Cell Factories, 2016, 15, 95.	4.0	66
50	Construction of heterologous gene expression cassettes for the development of recombinant Clostridium beijerinckii. Bioprocess and Biosystems Engineering, 2016, 39, 555-563.	3.4	4
51	Biosynthesis of poly(2-hydroxybutyrate-co-lactate) in metabolically engineered Escherichia coli. Biotechnology and Bioprocess Engineering, 2016, 21, 169-174.	2.6	25
52	Biosynthesis of Lactate-containing Polyhydroxyalkanoates in Recombinant Escherichia coli by Employing New CoA Transferases. KSBB Journal, 2016, 31, 27-32.	0.2	8
53	Structural and functional analysis of betaine aldehyde dehydrogenase from <i>Staphylococcus aureus</i> . Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1159-1175.	2.5	16
54	Engineering a horseradish peroxidase C stable to radical attacks by mutating multiple radical coupling sites. Biotechnology and Bioengineering, 2015, 112, 668-676.	3.3	11

#	Article	IF	CITATIONS
55	Structural insights into the efficient CO ₂ -reducing activity of an NAD-dependent formate dehydrogenase from <i>Thiobacillus</i> sp. KNK65MA. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 313-323.	2.5	23
56	Recent advances in development of biomass pretreatment technologies used in biorefinery for the production of bio-based fuels, chemicals and polymers. Korean Journal of Chemical Engineering, 2015, 32, 1945-1959.	2.7	104
57	Development of engineered <i>Escherichia coli</i> whole-cell biocatalysts for high-level conversion of <scp>I</scp> -lysine into cadaverine. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 1481-1491.	3.0	35
58	Expression of the NAD-dependent FDH1 \hat{l}^2 -subunit from Methylobacterium extorquens AM1 in Escherichia coli and its characterization. Biotechnology and Bioprocess Engineering, 2014, 19, 613-620.	2.6	6
59	Development of the radical-stable Coprinus cinereus peroxidase (CiP) by blocking the radical attack. Journal of Biotechnology, 2014, 189, 78-85.	3.8	7
60	Enhancing the activity of <i>Bacillus circulans</i> region. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 1181-1190.	3.0	10
61	Thermostabilization of glutamate decarboxylase B from Escherichia coli by structure-guided design of its pH-responsive N-terminal interdomain. Journal of Biotechnology, 2014, 174, 22-28.	3.8	20
62	Structure-Based Mutational Studies of Substrate Inhibition of Betaine Aldehyde Dehydrogenase BetB from Staphylococcus aureus. Applied and Environmental Microbiology, 2014, 80, 3992-4002.	3.1	52
63	Higher thermostability of l-lactate dehydrogenases is a key factor in decreasing the optical purity of d-lactic acid produced from Lactobacillus coryniformis. Enzyme and Microbial Technology, 2014, 58-59, 29-35.	3.2	15
64	Efficient CO2-Reducing Activity of NAD-Dependent Formate Dehydrogenase from Thiobacillus sp. KNK65MA for Formate Production from CO2 Gas. PLoS ONE, 2014, 9, e103111.	2.5	126
65	Prediction of the solvent affecting site and the computational design of stable Candida antarctica lipase B in a hydrophilic organic solvent. Journal of Biotechnology, 2013, 163, 346-352.	3.8	40
66	Activity enhancement of a Bacillus circulans xylanase by introducing ion-pair interactions into an \hat{l}_{\pm} -helix. Process Biochemistry, 2013, 48, 1495-1501.	3.7	5
67	Thermostabilization of Candida antarctica lipase B by double immobilization: Adsorption on a macroporous polyacrylate carrier and R1 silaffin-mediated biosilicification. Process Biochemistry, 2013, 48, 1181-1187.	3.7	19
68	Biochemical and Structural Studies of Conserved Maf Proteins Revealed Nucleotide Pyrophosphatases with a Preference for Modified Nucleotides. Chemistry and Biology, 2013, 20, 1386-1398.	6.0	15
69	Discovery and characterization of a thermostable d-lactate dehydrogenase from Lactobacillus jensenii through genome mining. Process Biochemistry, 2013, 48, 109-117.	3.7	20
70	Shifting the optimum pH of Bacillus circulans xylanase towards acidic side by introducing arginine. Biotechnology and Bioprocess Engineering, 2013, 18, 35-42.	2.6	22
71	Thermostabilization of <i>Bacillus subtilis</i> lipase A by minimizing the structural deformation caused by packing enhancement. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 1223-1229.	3.0	9
72	Stabilization of Candida antarctica lipase B in hydrophilic organic solvent by rational design of hydrogen bond. Biotechnology and Bioprocess Engineering, 2012, 17, 722-728.	2.6	54

#	Article	IF	CITATIONS
73	Hydrophobic interaction network analysis for thermostabilization of a mesophilic xylanase. Journal of Biotechnology, 2012, 161, 49-59.	3.8	43
74	Rational design of a Bacillus circulans xylanase by introducing charged residue to shift the pH optimum. Process Biochemistry, 2012, 47, 2487-2493.	3.7	24
75	Soluble expression of Candida antarctica lipase B in Escherichia coli by fusion with Skp chaperone. Biotechnology and Bioprocess Engineering, 2012, 17, 687-692.	2.6	8
76	Development of thermostable <i>Candida antarctica</i> lipase B through novel in silico design of disulfide bridge. Biotechnology and Bioengineering, 2012, 109, 867-876.	3.3	119
77	Gene cloning and expression of a 3-ketovalidoxylamine C-N-lyase from Flavobacterium saccharophilum IFO 13984. Biotechnology and Bioprocess Engineering, 2011, 16, 366-373.	2.6	1
78	Enzymatic analysis of the effect of naturally occurring Leu138Pro mutation identified in SHV $\ddot{\imath}_2$ -lactamase on hydrolysis of penicillin and ampicillin. BMC Microbiology, 2011, 11, 29.	3.3	4
79	A combined approach of experiments and computational docking simulation to the Coprinus cinereus peroxidase-catalyzed oxidative polymerization of alkyl phenols. Bioresource Technology, 2011, 102, 4901-4904.	9.6	11
80	Thermostabilization of Bacillus circulans xylanase: Computational optimization of unstable residues based on thermal fluctuation analysis. Journal of Biotechnology, 2011, 151, 56-65.	3.8	101
81	The development of a thermostable CiP (<i>Coprinus cinereus</i> peroxidase) through <i>in silico</i> design. Biotechnology Progress, 2010, 26, 1038-1046.	2.6	27
82	Thermostabilization of Bacillus circulans xylanase via computational design of a flexible surface cavity. Journal of Biotechnology, 2010, 146, 31-39.	3.8	58
83	Electroenzymatic synthesis of (S)-styrene oxide employing zinc oxide/carbon black composite electrode. Enzyme and Microbial Technology, 2010, 47, 313-321.	3.2	5