Zhongze Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1881536/publications.pdf

Version: 2024-02-01

			39113		45040	
ı	149	9,642	52		94	
	papers	citations	h-index		g-index	
				. '		
	154	154	154		11753	
	all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Signal Quality Investigation of a New Wearable Frontal Lobe EEG Device. Sensors, 2022, 22, 1898.	2.1	6
2	3D-printable colloidal photonic crystals. Materials Today, 2022, 56, 29-41.	8.3	61
3	A human cornea-on-a-chip for the study of epithelial wound healing by extracellular vesicles. IScience, 2022, 25, 104200.	1.9	19
4	Photoâ€Adjustable TiO ₂ â€Paper as a Smart Substrate for Paperâ€Based Analytical Devices. Advanced Materials Interfaces, 2022, 9, .	1.9	4
5	PBPK Modeling on Organs-on-Chips: An Overview of Recent Advancements. Frontiers in Bioengineering and Biotechnology, 2022, 10, 900481.	2.0	5
6	Multidimensional surface patterning based on wavelength-controlled disulfide-diselenide dynamic photochemistry. Materials Today, 2022, 57, 57-65.	8.3	3
7	Synergistically Bifunctional Paramagnetic Separation Enables Efficient Isolation of Urine Extracellular Vesicles and Downstream Phosphoproteomic Analysis. ACS Applied Materials & Samp; Interfaces, 2021, 13, 3622-3630.	4.0	29
8	Ordered inverse-opal scaffold based on bionic transpiration to create a biomimetic spine. Nanoscale, 2021, 13, 8614-8622.	2.8	12
9	Colloidal Photonic Crystals for Biomedical Applications. Small Structures, 2021, 2, 2000110.	6.9	47
10	Capillaryâ€Forceâ€Driven Selfâ€Assembly of 4Dâ€Printed Microstructures. Advanced Materials, 2021, 33, e2100332.	11.1	32
11	Automated evaluation of tumor spheroid behavior in 3D culture using deep learning-based recognition. Biomaterials, 2021, 272, 120770.	5.7	40
12	Reversed-engineered human alveolar lung-on-a-chip model. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	144
13	Role of Long Non-Coding RNA Polymorphisms in Cancer Chemotherapeutic Response. Journal of Personalized Medicine, 2021, 11, 513.	1.1	6
14	Frontal EEG-Based Multi-Level Attention States Recognition Using Dynamical Complexity and Extreme Gradient Boosting. Frontiers in Human Neuroscience, 2021, 15, 673955.	1.0	15
15	Static–Dynamic Fluorescence Patterns Based on Photodynamic Disulfide Reactions for Versatile Information Storage. Small, 2021, 17, e2102224.	5.2	12
16	Facile Surface Functionalization Strategy for Twoâ€Photon Lithography Microstructures. Small, 2021, 17, e2101048.	5.2	6
17	Utility of TPP-manufactured biophysical restrictions to probe multiscale cellular dynamics. Bio-Design and Manufacturing, 2021, 4, 776-789.	3.9	3
18	Construction of a high fidelity epidermis-on-a-chip for scalable <i>in vitro</i> irritation evaluation. Lab on A Chip, 2021, 21, 3804-3818.	3.1	29

#	Article	IF	Citations
19	Morphological diversity of single neurons in molecularly defined cell types. Nature, 2021, 598, 174-181.	13.7	180
20	From Cellular Infiltration Assessment to a Functional Gene Set-Based Prognostic Model for Breast Cancer. Frontiers in Immunology, 2021, 12, 751530.	2,2	4
21	Additive Manufacturing Technologies Based on Photopolymerization. , 2021, , 263-282.		O
22	ECSMP: A dataset on emotion, cognition, sleep, and multi-model physiological signals. Data in Brief, 2021, 39, 107660.	0.5	3
23	Wide-Gamut Biomimetic Structural Colors from Interference-Assisted Two-Photon Polymerization. ACS Applied Materials & Early; Interfaces, 2021, 13, 60648-60659.	4.0	9
24	Controlled Microstructural Architectures Based on Smart Fabrication Strategies. Advanced Functional Materials, 2020, 30, 1901760.	7.8	36
25	3D-printed cellular tips for tuning fork atomic force microscopy in shear mode. Nature Communications, 2020, 11, 5732.	5.8	8
26	3D Bioinspired Microstructures for Switchable Repellency in both Air and Liquid. Advanced Science, 2020, 7, 2000878.	5.6	17
27	Study on Development of Composite Hydrogels With Tunable Structures and Properties for Tumor-on-a-Chip Research. Frontiers in Bioengineering and Biotechnology, 2020, 8, 611796.	2.0	9
28	Reconfigurable Surface with Photodefinable Physicochemical Properties for User-Designable Cell Scaffolds. ACS Applied Bio Materials, 2020, 3, 2230-2238.	2.3	1
29	A Polydopamine-Functionalized Carbon Microfibrous Scaffold Accelerates the Development of Neural Stem Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 616.	2.0	13
30	Dualâ€Mode Wearable Strain Sensor Based on Graphene/Colloidal Crystal Films for Simultaneously Detection of Subtle and Large Human Motions. Advanced Materials Technologies, 2020, 5, 1901056.	3.0	23
31	Photo-responsive photonic hydrogel: <i>in situ</i> manipulation and monitoring of cell scaffold stiffness. Materials Horizons, 2020, 7, 2944-2950.	6.4	28
32	Polydopamine: UVâ€Triggered Polydopamine Secondary Modification: Fast Deposition and Removal of Metal Nanoparticles (Adv. Funct. Mater. 34/2019). Advanced Functional Materials, 2019, 29, 1970233.	7.8	0
33	TeraVR empowers precise reconstruction of complete 3-D neuronal morphology in the whole brain. Nature Communications, 2019, 10, 3474.	5.8	64
34	Recognition of Emotional States using Multiscale Information Analysis of High Frequency EEG Oscillations. Entropy, 2019, 21, 609.	1.1	28
35	Programmable Liquid Adhesion on Bioâ€Inspired Reâ€Entrant Structures. Small, 2019, 15, e1902360.	5.2	31
36	Multiresponsive Elastic Colloidal Crystals for Reversible Structural Color Patterns. Advanced Functional Materials, 2019, 29, 1902954.	7.8	100

#	Article	IF	Citations
37	Multiresponsive Nanoparticles: Multiresponsive Elastic Colloidal Crystals for Reversible Structural Color Patterns (Adv. Funct. Mater. 39/2019). Advanced Functional Materials, 2019, 29, 1970271.	7.8	2
38	Biomimetic Metaâ€Structured Electroâ€Microfluidics. Advanced Functional Materials, 2019, 29, 1906745.	7.8	21
39	Blu-Ray Discs as Universal Biochip Substrates: Lithography-Free Surface Activation and Assay Patterning. ACS Applied Materials & Samp; Interfaces, 2019, 11, 37330-37337.	4.0	4
40	UVâ€Triggered Polydopamine Secondary Modification: Fast Deposition and Removal of Metal Nanoparticles. Advanced Functional Materials, 2019, 29, 1901875.	7.8	40
41	Flourishing Smart Flexible Membranes Beyond Paper. Analytical Chemistry, 2019, 91, 4224-4234.	3.2	13
42	Fast Strategy to Functional Paper Surfaces. ACS Applied Materials & Samp; Interfaces, 2019, 11, 14445-14456.	4.0	23
43	Wearable eye health monitoring sensors based on peacock tail-inspired inverse opal carbon. Sensors and Actuators B: Chemical, 2019, 288, 734-741.	4.0	43
44	Advances of Microfluidics in Biomedical Engineering. Advanced Materials Technologies, 2019, 4, 1800663.	3.0	53
45	Bioinspired transfer method for the patterning of multiple nanomaterials. RSC Advances, 2019, 9, 4351-4360.	1.7	2
46	Self-assembled colloidal arrays for structural color. Nanoscale Advances, 2019, 1, 1672-1685.	2.2	62
47	Electroâ€Microfluidics: Biomimetic Metaâ€Structured Electroâ€Microfluidics (Adv. Funct. Mater. 51/2019). Advanced Functional Materials, 2019, 29, 1970349.	7.8	2
48	Piezoelectric-Driven Self-Powered Patterned Electrochromic Supercapacitor for Human Motion Energy Harvesting. ACS Sustainable Chemistry and Engineering, 2019, 7, 1745-1752.	3.2	73
49	Geckoâ€Inspired Paper Artificial Skin for Intimate Skin Contact and Multisensing. Advanced Materials Technologies, 2019, 4, 1800392.	3.0	30
50	Wearable Biosensors: Disposable <i>Morpho menelaus</i> Based Flexible Microfluidic and Electronic Sensor for the Diagnosis of Neurodegenerative Disease (Adv. Healthcare Mater. 5/2018). Advanced Healthcare Materials, 2018, 7, 1870025.	3.9	3
51	Recent advances in merging photonic crystals and plasmonics for bioanalytical applications. Analyst, The, 2018, 143, 2448-2458.	1.7	17
52	3D Printing of Bioinspired Liquid Superrepellent Structures. Advanced Materials, 2018, 30, e1800103.	11,1	135
53	Quantitative and ultrasensitive detection of multiplex cardiac biomarkers in lateral flow assay with core-shell SERS nanotags. Biosensors and Bioelectronics, 2018, 106, 204-211.	5.3	248
54	Disposable <i>Morpho menelaus</i> Based Flexible Microfluidic and Electronic Sensor for the Diagnosis of Neurodegenerative Disease. Advanced Healthcare Materials, 2018, 7, 1701306.	3.9	28

#	Article	IF	Citations
55	Bio-inspired robust non-iridescent structural color with self-adhesive amorphous colloidal particle arrays. Nanoscale, 2018, 10, 3673-3679.	2.8	87
56	Multiplex Analysis on a Single Porous Hydrogel Bead with Encoded SERS Nanotags. ACS Applied Materials & Samp; Interfaces, 2018, 10, 21-26.	4.0	48
57	A multifunctional wearable sensor based on a graphene/inverse opal cellulose film for simultaneous, <i>in situ</i>) monitoring of human motion and sweat. Nanoscale, 2018, 10, 2090-2098.	2.8	130
58	Bioinspired Kirigami Fishâ€Based Highly Stretched Wearable Biosensor for Human Biochemical–Physiological Hybrid Monitoring. Advanced Materials Technologies, 2018, 3, 1700308.	3.0	69
59	Single-Step Fabrication of High-Throughput Surface-Enhanced Raman Scattering Substrates. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4222-4232.	4.0	8
60	Recent biomedical applications of bio-sourced materials. Bio-Design and Manufacturing, 2018, 1, 26-44.	3.9	13
61	3D computer-aided nanoprinting for solid-state nanopores. Nanoscale Horizons, 2018, 3, 312-316.	4.1	10
62	Multifunctional Wearable Sensing Devices Based on Functionalized Graphene Films for Simultaneous Monitoring of Physiological Signals and Volatile Organic Compound Biomarkers. ACS Applied Materials & Samp; Interfaces, 2018, 10, 11785-11793.	4.0	85
63	Designs of Biomaterials and Microenvironments for Neuroengineering. Neural Plasticity, 2018, 2018, 1-10.	1.0	18
64	3D Printed Asymmetric Nanoprobe for Plasmonic Nanofocusing under Internal Illumination. ACS Photonics, 2018, 5, 4872-4879.	3.2	5
65	Hepatocyte Aggregate Formation on Chitin-Based Anisotropic Microstructures of Butterfly Wings. Biomimetics, 2018, 3, 2.	1.5	7
66	Generating Microdroplet Array on Photonic Pseudo-paper for Absolute Quantification of Nucleic Acids. ACS Applied Materials & Samp; Interfaces, 2018, 10, 39144-39150.	4.0	34
67	Quantitative detection of multiplex cardiac biomarkers with encoded SERS nanotags on a single T line in lateral flow assay. Sensors and Actuators B: Chemical, 2018, 277, 502-509.	4.0	87
68	Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography. RSC Advances, 2018, 8, 20117-20123.	1.7	22
69	Liquid Superrepellents: 3D Printing of Bioinspired Liquid Superrepellent Structures (Adv. Mater.) Tj ETQq1 1 0.78	1314 rgBT 11.1	/Gverlock 1
70	Fabrication of Bioinspired Hierarchical Functional Structures by Using Honeycomb Films as Templates. Advanced Functional Materials, 2018, 28, 1803194.	7.8	28
71	Robust, Highly Visible, and Facile Bioconjugation Colloidal Crystal Beads for Bioassay. ACS Applied Materials & Samp; Interfaces, 2018, 10, 29378-29384.	4.0	17
72	Morphology, Migration, and Transcriptome Analysis of Schwann Cell Culture on Butterfly Wings with Different Surface Architectures. ACS Nano, 2018, 12, 9660-9668.	7.3	32

#	Article	IF	Citations
73	Reparable Superhydrophobic Surface with Hidden Reactivity, Its Photofunctionalization and Photopatterning. Advanced Functional Materials, 2018, 28, 1803765.	7.8	31
74	Bioinspired Multifunctional Spindleâ€Knotted Microfibers from Microfluidics. Small, 2017, 13, 1600286.	5.2	101
75	Using Transmissive Photonic Band Edge Shift to Detect Explosives: A Study with 2,4,6-Trinitrotoluene (TNT). ACS Photonics, 2017, 4, 384-395.	3.2	8
76	Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11933-11941.	4.0	60
77	Composite core-shell microparticles from microfluidics for synergistic drug delivery. Science China Materials, 2017, 60, 543-553.	3.5	74
78	Bioinspired Helical Microfibers from Microfluidics. Advanced Materials, 2017, 29, 1605765.	11.1	222
79	Patterned Photonic Nitrocellulose for Pseudopaper ELISA. Analytical Chemistry, 2017, 89, 7727-7733.	3.2	45
80	Bio-inspired self-healing structural color hydrogel. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5900-5905.	3.3	248
81	Discrimination of Nosiheptide Sources with Plasmonic Filters. ACS Applied Materials & Eamp; Interfaces, 2017, 9, 13049-13055.	4.0	4
82	Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst. ACS Applied Materials & Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst. ACS Applied Materials & Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst. ACS Applied Materials & Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst. ACS Applied Materials & Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst. ACS Applied Materials & Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst. ACS Applied Materials & Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst. ACS Applied Materials & Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst. ACS Applied Materials & Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst. ACS Applied Materials & Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst. ACS Applied Materials & Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst. ACS Applied Materials & Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst. ACS Applied Materials & Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst. ACS Applied Materials & Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst. ACS Applied Materials & Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst. ACS Applied Materials & Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst. ACS Applied Materials & Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst. ACS Applied Materials & Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst. ACS Applied Materials & Enzymatic Inverse Invers	4.0	65
83	Bioinspired Heterogeneous Structural Color Stripes from Capillaries. Advanced Materials, 2017, 29, 1704569.	11.1	123
84	Transpiration-Inspired Fabrication of Opal Capillary with Multiple Heterostructures for Multiplex Aptamer-Based Fluorescent Assays. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32577-32582.	4.0	19
85	Vertical Paper Analytical Devices Fabricated Using the Principles of Quilling and Kirigami. Scientific Reports, 2017, 7, 7255.	1.6	15
86	Ultrasensitive Detection of Protein with Wide Linear Dynamic Range Based on Core–Shell SERS Nanotags and Photonic Crystal Beads. ACS Sensors, 2017, 2, 1035-1043.	4.0	63
87	Chitin-Based Anisotropic Nanostructures of Butterfly Wings for Regulating Cells Orientation. Polymers, 2017, 9, 386.	2.0	18
88	Bioinspired shape-memory graphene film with tunable wettability. Science Advances, 2017, 3, e1700004.	4.7	210
89	Cells Cultured on Core–Shell Photonic Crystal Barcodes for Drug Screening. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13840-13848.	4.0	102
90	Patterned Photonic Nitrocellulose for Pseudo-Paper Microfluidics. Analytical Chemistry, 2016, 88, 5424-5429.	3.2	64

#	Article	IF	CITATIONS
91	Synthesis of wrinkled graphene hybrids for enhanced visible-light photocatalytic activities. RSC Advances, 2016, 6, 45617-45623.	1.7	6
92	Multiplex bioassays encoded by photonic crystal beads and SERS nanotags. Nanoscale, 2016, 8, 17465-17471.	2.8	27
93	Tunable Structural Color Surfaces with Visually Selfâ€Reporting Wettability. Advanced Functional Materials, 2016, 26, 7937-7942.	7.8	109
94	Rapid identification of electricigens via silver-plated photonic crystal filters. Nano Research, 2016, 9, 2760-2771.	5.8	6
95	Hyperspectral imaging analysis of a photonic crystal bead array for multiplex bioassays. Analyst, The, 2016, 141, 6549-6556.	1.7	3
96	Tubular inverse opal scaffolds for biomimetic vessels. Nanoscale, 2016, 8, 13574-13580.	2.8	28
97	Structural color materials in evolution. Materials Today, 2016, 19, 420-421.	8.3	46
98	Organâ€onâ€aâ€Chip Systems: Microengineering to Biomimic Living Systems. Small, 2016, 12, 2253-2282.	5.2	245
99	Boronate affinity molecularly imprinted inverse opal particles for multiple label-free bioassays. Chemical Communications, 2016, 52, 3296-3299.	2.2	53
100	A photonic crystal hydrogel suspension array for the capture of blood cells from whole blood. Nanoscale, 2016, 8, 3841-3847.	2.8	44
101	Controlled Fabrication of Bioactive Microfibers for Creating Tissue Constructs Using Microfluidic Techniques. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1080-1086.	4.0	119
102	An exothermic chip for point-of-care testing using a forehead thermometer as a readout. Lab on A Chip, 2016, 16, 525-531.	3.1	30
103	Osmotic pressure-triggered cavitation in microcapsules. Lab on A Chip, 2016, 16, 251-255.	3.1	29
104	Free-Standing Photonic Crystal Films with Gradient Structural Colors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 6796-6801.	4.0	62
105	Oil Absorption: Microfluidic Generation of Porous Particles Encapsulating Spongy Graphene for Oil Absorption (Small 32/2015). Small, 2015, 11, 3842-3842.	5.2	0
106	Carbon Inverse Opal Rods for Nonenzymatic Cholesterol Detection. Small, 2015, 11, 5766-5770.	5.2	27
107	Photonic Crystal Hydrogel Enhanced Plasmonic Staining for Multiplexed Protein Analysis. Small, 2015, 11, 6036-6043.	5.2	59
108	Non-iridescent structural color pigments from liquid marbles. Journal of Materials Chemistry C, 2015, 3, 6607-6612.	2.7	37

#	Article	IF	CITATIONS
109	Gold nanoparticle incorporated inverse opal photonic crystal capillaries for optofluidic surface enhanced Raman spectroscopy. Biosensors and Bioelectronics, 2015, 72, 268-274.	5. 3	61
110	Microfluidic Generation of Porous Microcarriers for Three-Dimensional Cell Culture. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27035-27039.	4.0	69
111	Photonic Crystal Microbubbles as Suspension Barcodes. Journal of the American Chemical Society, 2015, 137, 15533-15539.	6.6	117
112	Colorimetric-Based Detection of TNT Explosives Using Functionalized Silica Nanoparticles. Sensors, 2015, 15, 12891-12905.	2.1	26
113	Cell Orientation Gradients on an Inverse Opal Substrate. ACS Applied Materials & Samp; Interfaces, 2015, 7, 10091-10095.	4.0	31
114	Microfluidic Generation of Porous Particles Encapsulating Spongy Graphene for Oil Absorption. Small, 2015, 11, 3890-3895.	5.2	60
115	Microfluidic Synthesis of Barcode Particles for Multiplex Assays. Small, 2015, 11, 151-174.	5.2	181
116	Self-Assembled Coffee-Ring Colloidal Crystals for Structurally Colored Contact Lenses. Small, 2015, 11, 926-930.	5.2	43
117	Photonic Crystal Encoded Microcarriers for Biomaterial Evaluation. Small, 2014, 10, 88-93.	5.2	62
118	Anisotropic colloidal crystal particles from microfluidics. Journal of Colloid and Interface Science, 2014, 421, 64-70.	5.0	32
119	Photonic Crystal Microcapsules for Labelâ€free Multiplex Detection. Advanced Materials, 2014, 26, 3270-3274.	11.1	140
120	Responsive Colloidal Crystal for Spectrometer Grating. ACS Photonics, 2014, 1, 121-126.	3.2	38
121	Hybrid inverse opals for regulating cell adhesion and orientation. Nanoscale, 2014, 6, 10650-10656.	2.8	33
122	Spherical Colloidal Photonic Crystals. Accounts of Chemical Research, 2014, 47, 3632-3642.	7.6	341
123	Controlling the morphology and optoelectronic properties of graphene hybrid materials by porphyrin interactions. Chemical Communications, 2014, 50, 8951.	2.2	25
124	Bio-Inspired Vapor-Responsive Colloidal Photonic Crystal Patterns by Inkjet Printing. ACS Nano, 2014, 8, 11094-11100.	7.3	275
125	Aptamerâ€Functionalized Barcode Particles for the Capture and Detection of Multiple Types of Circulating Tumor Cells. Advanced Materials, 2014, 26, 7333-7338.	11.1	166
126	Image Decoding of Photonic Crystal Beads Array in the Microfluidic Chip for Multiplex Assays. Scientific Reports, 2014, 4, 6755.	1.6	12

#	Article	IF	Citations
127	Tailoring Colloidal Photonic Crystals with Wide Viewing Angles. Small, 2013, 9, 2266-2271.	5.2	107
128	Photonic crystal for gas sensing. Journal of Materials Chemistry C, 2013, 1, 6087.	2.7	134
129	Microfluidic generation of magnetoresponsive Janus photonic crystal particles. Nanoscale, 2013, 5, 9553.	2.8	96
130	In situ synthesis of gold nanoparticles (AuNPs) in butterfly wings for surface enhanced Raman spectroscopy (SERS). Journal of Materials Chemistry B, 2013, 1, 1607.	2.9	76
131	An image identification method for Biochips based on photonic crystal encoded beads., 2013,,.		0
132	Polypyrrole nanotubes for electrochemically controlled solid-phase extraction of anions and cations. Analytical Methods, 2013, 5, 7066.	1.3	4
133	Preparation of conducting polymer inverse opals and its application as ammonia sensor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 433, 59-63.	2.3	41
134	Bioinspired Multifunctional Janus Particles for Droplet Manipulation. Journal of the American Chemical Society, 2013, 135, 54-57.	6.6	156
135	Multifunctional photonic crystal barcodes from microfluidics. NPG Asia Materials, 2012, 4, e25-e25.	3.8	125
136	Dual signal glucose reporter based on inverse opal conducting hydrogel films. Soft Matter, 2012, 8, 4911.	1.2	29
137	Bio-inspired variable structural color materials. Chemical Society Reviews, 2012, 41, 3297.	18.7	772
138	Binary Optical Encoding Strategy for Multiplex Assay. Langmuir, 2011, 27, 11722-11728.	1.6	14
139	Advances of multiplex and high throughput biomolecular detection technologies based on encoding microparticles. Science China Chemistry, 2011, 54, 1185.	4.2	11
140	Two-Phase Approach to High-Quality, Oil-Soluble, Near-Infrared-Emitting PbS Quantum Dots by Using Various Water-Soluble Anion Precursors. European Journal of Inorganic Chemistry, 2011, 2011, 2422-2432.	1.0	25
141	Sintering Photonic Beads for Multiplex Biosensing. Journal of Nanoscience and Nanotechnology, 2010, 10, 588-594.	0.9	10
142	Quantumâ€Dotâ€Tagged Bioresponsive Hydrogel Suspension Array for Multiplex Labelâ€Free DNA Detection. Advanced Functional Materials, 2010, 20, 976-982.	7.8	178
143	Photonic Crystals in Bioassays. Advanced Functional Materials, 2010, 20, 2970-2988.	7.8	237
144	Preparation of Gold Nanoparticle/Graphene Composites with Controlled Weight Contents and Their Application in Biosensors. Journal of Physical Chemistry C, 2010, 114, 1822-1826.	1.5	389

ZHONGZE Gu

#	Article	IF	CITATIONS
145	Encoded Porous Beads for Labelâ€Free Multiplex Detection of Tumor Markers. Advanced Materials, 2009, 21, 569-572.	11.1	208
146	A Magnetically Tunable Colloidal Crystal Film for Reflective Display. Macromolecular Rapid Communications, 2009, 30, 1945-1949.	2.0	32
147	Multiplex detection of tumor markers with photonic suspension array. Analytica Chimica Acta, 2009, 633, 103-108.	2.6	72
148	Polypyrrole actuators with inverse opal structures. Journal of Materials Chemistry, 2009, 19, 1653.	6.7	36
149	Encoded Silica Colloidal Crystal Beads as Supports for Potential Multiplex Immunoassay. Analytical Chemistry, 2008, 80, 1598-1605.	3.2	208