Yue Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1881113/publications.pdf

Version: 2024-02-01

46 1,299 20 36
papers citations h-index g-index

48 48 48 2102 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	In vitro and in vivo studies on the degradation and biosafety of Mg-Zn-Ca-Y alloy hemostatic clip with the carotid artery of SD rat model. Materials Science and Engineering C, 2020, 115, 111093.	7.3	13
2	Characterization of tantalum and tantalum nitride films on Ti6Al4V substrate prepared by filtered cathodic vacuum arc deposition for biomedical applications. Surface and Coatings Technology, 2019, 365, 24-32.	4.8	22
3	Biodegradable Conducting Polymer Coating to Mitigate Early Stage Degradation of Magnesium in Simulated Biological Fluid: An Electrochemical Mechanistic Study. ChemElectroChem, 2019, 6, 4893-4901.	3.4	3
4	Microstructure, mechanical and corrosion properties of electron-beam-melted and plasma-transferred arc-welded WCP/NiBSi metal matrix composites. Rare Metals, 2019, 38, 814-823.	7.1	12
5	Cytocompatible tantalum films on Ti6Al4V substrate by filtered cathodic vacuum arc deposition. Bioelectrochemistry, 2018, 122, 32-39.	4.6	16
6	Tribo-corrosion performance of filtered-arc-deposited tantalum coatings on Ti-13Nb-13Zr alloy for bio-implants applications. Wear, 2018, 400-401, 31-42.	3.1	27
7	Study on the Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Zn-Ca Alloy Wire for Biomaterial Application. Journal of Materials Engineering and Performance, 2018, 27, 1837-1846.	2.5	29
8	Novel Chromium-Free Technologies for the Prevention of Wet Stack Corrosion on Hot Dipped Metallic Coatings: A Review. Corrosion, 2018, 74, 918-935.	1.1	0
9	Self-healing characteristic of praseodymium conversion coating on AZNd Mg alloy studied by scanning electrochemical microscopy. Electrochemistry Communications, 2017, 76, 6-9.	4.7	41
10	Research on optical fiber magnetic field sensors based on multi-mode fiber and spherical structure. Optoelectronics Letters, 2017, 13, 16-20.	0.8	3
11	The hot deformation behavior and microstructure evolution of HA/Mg-3Zn-0.8Zr composites for biomedical application. Materials Science and Engineering C, 2017, 77, 690-697.	7.3	23
12	Corrosion behaviour and microstructure of tantalum film on Ti6Al4V substrate by filtered cathodic vacuum arc deposition. Thin Solid Films, 2017, 636, 54-62.	1.8	22
13	Mechanical properties of TiN ceramic coating on a heat treated Ti-13Zr-13Nb alloy. Journal of Alloys and Compounds, 2017, 724, 34-44.	5.5	6
14	Magnetic field sensor based on peanut-shape structure and multimode fiber. Optoelectronics Letters, 2017, 13, 184-187.	0.8	8
15	The Influence of Zn Content on the Corrosion and Wear Performance of Mg-Zn-Ca Alloy in Simulated Body Fluid. Journal of Materials Engineering and Performance, 2016, 25, 3890-3895.	2.5	44
16	Corrosion behaviour and adhesion properties of sputtered tantalum coating on Ti6Al4V substrate. Surface and Coatings Technology, 2016, 307, 666-675.	4.8	48
17	Optical fiber magnetic field sensors with peanut-shape structure cascaded with LPFG. Optoelectronics Letters, 2016, 12, 358-360.	0.8	4
18	Mono- and multiple TiN(/Ti) coating adhesion mechanism on a Ti–13Nb–13Zr alloy. Applied Surface Science, 2015, 355, 502-508.	6.1	34

#	Article	IF	CITATIONS
19	Preparation of monodispersed CuS nanocrystals in an oleic acid/paraffin system. RSC Advances, 2015, 5, 84465-84470.	3.6	15
20	Effect of extreme pressure agents on the anti-scratch behaviour of high-speed steel material. Tribology International, 2015, 81, 19-28.	5. 9	15
21	Development of YBa ₂ Cu ₃ O _{7â^'x} superconducting films on (100) SrTiO ₃ and (110) Ag substrates by chemical spray pyrolysis. CrystEngComm, 2014, 16, 532-542.	2.6	1
22	Effect of corrosion on mechanical behaviors of Mg-Zn-Zr alloy in simulated body fluid. Frontiers of Materials Science, 2014, 8, 264-270.	2.2	26
23	Synthesis of tunable ZnS–CuS microspheres and visible-light photoactivity for rhodamine B. New Journal of Chemistry, 2014, 38, 4182-4189.	2.8	49
24	Preparation of various kinds of copper sulfides in a facile way and the enhanced catalytic activity by visible light. Journal of Materials Chemistry A, 2013, 1, 8616.	10.3	61
25	Preparation of spherical ZnO/ZnS core/shell particles and the photocatalytic activity for methyl orange. Materials Letters, 2013, 96, 221-223.	2.6	26
26	Aqueous Colloidal Stability Evaluated by Zeta Potential Measurement and Resultant <scp><scp>TiO</scp>_{<scp>Stable for Superior Photovoltaic Performance. Journal of the American Ceramic Society, 2013, 96, 2636-2643.</scp>}</scp>	3.8	26
27	Morphology-controllable 1D–3D nanostructured TiO2bilayer photoanodes for dye-sensitized solar cells. Chemical Communications, 2013, 49, 966-968.	4.1	94
28	Structurally stabilized mesoporous TiO2 nanofibres for efficient dye-sensitized solar cells. APL Materials, 2013, 1 , .	5.1	22
29	Continually adjustable oriented 1D TiO2 nanostructure arrays with controlled growth of morphology and their application in dye-sensitized solar cells. CrystEngComm, 2012, 14, 5472.	2.6	32
30	Improved photovoltaic performance of dye-sensitized solar cells with modified self-assembling highly ordered mesoporous TiO2 photoanodes. Journal of Materials Chemistry, 2012, 22, 11711.	6.7	37
31	Rational Design of 3D Dendritic TiO ₂ Nanostructures with Favorable Architectures. Journal of the American Chemical Society, 2011, 133, 19314-19317.	13.7	387
32	Fabrication and Superconducting Properties of Highly Dense \${m MgB}_{2}\$ Bulk Using a Two-Step Sintering Method. IEEE Transactions on Applied Superconductivity, 2009, 19, 2763-2766.	1.7	7
33	Superconducting Properties of \${m MgB}_{2}\$ Wire Using Ball-Milled Low Purity Boron. IEEE Transactions on Applied Superconductivity, 2009, 19, 2714-2717.	1.7	0
34	Investigation of Texture Formation in Ni-7at.%W Alloy Substrates by Spark Plasma Sintering Technique. IEEE Transactions on Applied Superconductivity, 2009, 19, 3279-3282.	1.7	4
35	YBCO Films With \${m Zr}^{4+}\$ Doping Grown by MOD Method. IEEE Transactions on Applied Superconductivity, 2009, 19, 3403-3406.	1.7	2
36	Preparation of $fm CeO_{2}/{m La}_{2}/{m Zr}_{2}/{m O}_{7}$ \$ Buffer Layers on Textured Ni5W Substrates by Chemical Solution Deposition Method. IEEE Transactions on Applied Superconductivity, 2009, 19, 3423-3426.	1.7	7

#	Article	IF	CITATIONS
37	A simple MOD method to grow a single buffer layer of Ce0.8Gd0.2O1.9 (CGO) for coated conductors. Physica C: Superconductivity and Its Applications, 2009, 469, 230-233.	1.2	7
38	Effect of addition of TiO <inf>2</inf> /SiO <inf>2</inf> nanoparticles on H <inf>c2</inf> and H <inf>irr</inf> in MgB <inf>2</inf> bulks. , 2008, , .		0
39	Kinetic roughening of magnetic flux penetration in MgB2 thin films. Applied Physics Letters, 2007, 91, 222505.	3.3	2
40	Deposition of MgB ₂ Thin Films on Nb Substrates Using an In Situ Annealing PLD Method. Materials Science Forum, 2007, 546-549, 2027-2030.	0.3	1
41	Study of Oxygen Incorporation in PLD \${m MgB}_{2}\$ Films by Rutherford Backscattering Spectroscopy. IEEE Transactions on Applied Superconductivity, 2007, 17, 2875-2878.	1.7	3
42	Development of cube textured Ni–5at.%W alloy substrates for coated conductor application using a melting process. Physica C: Superconductivity and Its Applications, 2006, 440, 10-16.	1.2	32
43	Off-axis MgB2films using anin situannealing pulsed laser deposition method. Superconductor Science and Technology, 2005, 18, 395-399.	3.5	15
44	Superconducting and Microstructural Properties of Two Types of <tex>\$rm MgB_2\$</tex> Films Prepared by Pulsed Laser Deposition. IEEE Transactions on Applied Superconductivity, 2005, 15, 3261-3264.	1.7	10
45	Comparative study ofin situandex situMgB2films prepared by pulsed laser deposition. Superconductor Science and Technology, 2004, 17, S482-S485.	3.5	21
46	In situannealing of superconducting MgB2films prepared by pulsed laser deposition. Superconductor Science and Technology, 2003, 16, 1487-1492.	3.5	19