Sara Marinelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/188100/publications.pdf

Version: 2024-02-01

39 papers 6,768 citations

257450
24
h-index

265206 42 g-index

45 all docs

45 docs citations

45 times ranked

16536 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Denervation-activated STAT3–IL-6 signalling in fibro-adipogenic progenitors promotes myofibres atrophy and fibrosis. Nature Cell Biology, 2018, 20, 917-927.	10.3	189
3	TRPV1 channels are critical brain inflammation detectors and neuropathic pain biomarkers in mice. Nature Communications, 2017, 8, 15292.	12.8	180
4	The Analgesic Effect on Neuropathic Pain of Retrogradely Transported botulinum Neurotoxin A Involves Schwann Cells and Astrocytes. PLoS ONE, 2012, 7, e47977.	2.5	132
5	The function neutralizing anti-TrkA antibody MNAC13 reduces inflammatory and neuropathic pain. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2985-2990.	7.1	115
6	Higher pain perception and lack of recovery from neuropathic pain in females: A behavioural, immunohistochemical, and proteomic investigation on sex-related differences in mice. Pain, 2014, 155, 388-402.	4.2	104
7	Schwann cell autophagy counteracts the onset and chronification of neuropathic pain. Pain, 2014, 155, 93-107.	4.2	98
8	Short- but not long-lasting treadmill running reduces allodynia and improves functional recovery after peripheral nerve injury. Neuroscience, 2010, 168, 273-287.	2.3	92
9	Anti-allodynic efficacy of botulinum neurotoxin A in a model of neuropathic pain. Neuroscience, 2007, 145, 1-4.	2.3	91
10	Taking Pain Out of NGF: A "Painless―NGF Mutant, Linked to Hereditary Sensory Autonomic Neuropathy Type V, with Full Neurotrophic Activity. PLoS ONE, 2011, 6, e17321.	2.5	84
11	Botulinum neurotoxin type A counteracts neuropathic pain and facilitates functional recovery after peripheral nerve injury in animal models. Neuroscience, 2010, 171, 316-328.	2.3	79
12	Botulinum neurotoxins and formalin-induced pain: Central vs. peripheral effects in mice. Brain Research, 2006, 1082, 124-131.	2.2	71
13	The effect of botulinum neurotoxin A on sciatic nerve injury-induced neuroimmunological changes in rat dorsal root ganglia and spinal cord. Neuroscience, 2011, 175, 358-366.	2.3	69
14	17beta-estradiol counteracts neuropathic pain: a behavioural, immunohistochemical and proteomic investigation on sex-related differences in mice. Scientific Reports, 2016, 6, 18980.	3.3	64
15	ProNGFNGF imbalance triggers learning and memory deficits, neurodegeneration and spontaneous epileptic-like discharges in transgenic mice. Cell Death and Differentiation, 2013, 20, 1017-1030.	11.2	62
16	Intranasal "painless―Human Nerve Growth Factors Slows Amyloid Neurodegeneration and Prevents Memory Deficits in App X PS1 Mice. PLoS ONE, 2012, 7, e37555.	2.5	60
17	Participation of pro- and anti-nociceptive interleukins in botulinum toxin A-induced analgesia in a rat model of neuropathic pain. European Journal of Pharmacology, 2016, 791, 377-388.	3.5	57
18	Pain sensitivity in mice lacking the Cav $2.1\hat{l}\pm1$ subunit of P/Q-type Ca $2+$ channels. Neuroscience, 2006, 142, 823-832.	2.3	56

#	Article	IF	CITATIONS
19	In vitro receptor binding properties of a "painless―NGF mutein, linked to hereditary sensory autonomic neuropathy type V. Biochemical and Biophysical Research Communications, 2010, 391, 824-829.	2.1	47
20	Botulinum toxin A increases analgesic effects of morphine, counters development of morphine tolerance and modulates glia activation and \hat{l} 4 opioid receptor expression in neuropathic mice. Brain, Behavior, and Immunity, 2013, 32, 40-50.	4.1	46
21	Modeling socially anhedonic syndromes: genetic and pharmacological manipulation of opioid neurotransmission in mice. Translational Psychiatry, 2012, 2, e155-e155.	4.8	44
22	Effects of caloric restriction on neuropathic pain, peripheral nerve degeneration and inflammation in normometabolic and autophagy defective prediabetic Ambra1 mice. PLoS ONE, 2018, 13, e0208596.	2.5	28
23	D-Aspartate Modulates Nociceptive-Specific Neuron Activity and Pain Threshold in Inflammatory and Neuropathic Pain Condition in Mice. BioMed Research International, 2015, 2015, 1-10.	1.9	27
24	The Rac GTPase-activating bacterial protein toxin CNF1 induces analgesia up-regulating \hat{l} 4-opioid receptors. Pain, 2009, 145, 219-229.	4.2	24
25	Botulinum neurotoxin A enhances the analgesic effects on inflammatory pain and antagonizes tolerance induced by morphine in mice. Brain, Behavior, and Immunity, 2012, 26, 489-499.	4.1	23
26	Targeting cancer stem cells in medulloblastoma by inhibiting AMBRA1 dual function in autophagy and STAT3 signalling. Acta Neuropathologica, 2021, 142, 537-564.	7.7	21
27	Activation of skeletal muscle–resident glial cells upon nerve injury. JCI Insight, 2021, 6, .	5.0	20
28	Sexually Dimorphic Immune and Neuroimmune Changes Following Peripheral Nerve Injury in Mice: Novel Insights for Gender Medicine. International Journal of Molecular Sciences, 2021, 22, 4397.	4.1	16
29	Revealing the Therapeutic Potential of Botulinum Neurotoxin Type A in Counteracting Paralysis and Neuropathic Pain in Spinally Injured Mice. Toxins, 2020, 12, 491.	3.4	15
30	M2 Receptors Exert Analgesic Action on DRG Sensory Neurons by Negatively Modulating VR1 Activity. Journal of Cellular Physiology, 2014, 229, 783-790.	4.1	14
31	Botulinum Toxin B Affects Neuropathic Pain but Not Functional Recovery after Peripheral Nerve Injury in a Mouse Model. Toxins, 2018, 10, 128.	3.4	13
32	Innovative mouse model mimicking human-like features of spinal cord injury: efficacy of Docosahexaenoic acid on acute and chronic phases. Scientific Reports, 2019, 9, 8883.	3.3	12
33	Effects of age-related loss of P/Q-type calcium channels in a mice model of peripheral nerve injury. Neurobiology of Aging, 2015, 36, 352-364.	3.1	11
34	Impact of caloric restriction on peripheral nerve injuryâ€induced neuropathic pain during ageing in mice. European Journal of Pain, 2020, 24, 374-382.	2.8	9
35	CXCR2 increases in ALS cortical neurons and its inhibition prevents motor neuron degeneration in vitro and improves neuromuscular function in SOD1G93A mice. Neurobiology of Disease, 2021, 160, 105538.	4.4	9
36	Single Cycle Structure-Based Humanization of an Anti-Nerve Growth Factor Therapeutic Antibody. PLoS ONE, 2012, 7, e32212.	2.5	8

SARA MARINELLI

#	Article	IF	CITATIONS
37	Very Early Involvement of Innate Immunity in Peripheral Nerve Degeneration in SOD1-G93A Mice. Frontiers in Immunology, 2020, 11, 575792.	4.8	7
38	Dataset of botulinum toxin A influence on interleukins under neuropathy. Data in Brief, $2016, 9, 1020-1023$.	1.0	2
39	Editorial: Neuroinflammation and Neuroautoimmunity in Peripheral Neuropathies: Old Players, New Roles. Frontiers in Immunology, 2021, 12, 801760.	4.8	O