
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1880948/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of radon, thoron, and their progeny concentrations in the dwellings of Shivalik hills of Jammu and Kashmir, India. Environmental Geochemistry and Health, 2023, 45, 5685-5701.	3.4	6
2	A comprehensive study of radon in drinking waters of Hanumangarh district and the assessment of resulting dose to local population. Environmental Geochemistry and Health, 2023, 45, 443-455.	3.4	8
3	Effect of natural radionuclide's in the environment along the Jwalamukhi thrust of Himachal Pradesh, North West Himalayas, India. Environmental Geochemistry and Health, 2022, 44, 1783-1793.	3.4	1
4	Radioactivity monitoring in the vicinity of Jawalamukhi thrust NW Himalaya, India for tectonic study. Natural Hazards, 2022, 111, 2219-2240.	3.4	3
5	Assessment of natural radioactivity levels in the Lesser Himalayas of the Jammu and Kashmir, India. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331, 1907-1921.	1.5	6
6	Mathematical Modelling to estimate Radon exhalation rates: A study on soil samples from Pangi valley of Chamba district, Himachal Pradesh, India. Journal of Physics: Conference Series, 2022, 2267, 012123.	0.4	0
7	Recent developments in phosphate materials for their thermoluminescence dosimeter (TLD) applications. Luminescence, 2021, 36, 1808-1817.	2.9	15
8	Dose distribution to individual tissues and organs due to exposure of alpha energies from radon and thoron to local population of Hanumangarh, Rajasthan, India. Journal of Radioanalytical and Nuclear Chemistry, 2021, 327, 1073-1085.	1.5	14
9	A systematic study of uranium retention in human organs and quantification of radiological and chemical doses from uranium ingestion. Environmental Technology and Innovation, 2021, 21, 101360.	6.1	15
10	Evaluation of uranium and other toxic heavy metals in drinking water of Chamba district, Himachal Pradesh, India for possible health hazards. Environmental Earth Sciences, 2021, 80, 1.	2.7	12
11	Measurement of radionuclide contents and 222Rn/220Rn exhalation rate in soil samples from sub-mountainous region of India. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	7
12	Radiological risk assessment to the public due to the presence of radon in water of Barnala district, Punjab, India. Environmental Geochemistry and Health, 2021, 43, 5011-5024.	3.4	24
13	Quantification of radon contamination in drinking water of Rajasthan, India. Journal of Radioanalytical and Nuclear Chemistry, 2021, 327, 1149-1157.	1.5	17
14	Dosimetric assessment of primordial radionuclides in soil and groundwater of Sikar district, Rajasthan. Journal of Radioanalytical and Nuclear Chemistry, 2021, 330, 1605-1620.	1.5	6
15	Optimization of fly ash content in cement and assessment of radiological risk. Indoor and Built Environment, 2020, 29, 286-292.	2.8	6
16	Biokinetic Modelling and Risk Assessment of Uranium in Humans. Radionuclides and Heavy Metals in Environment, 2020, , 217-241.	0.8	1
17	Quantitative assessment of exposure of heavy metals in groundwater and soil on human health in Reasi district, Jammu and Kashmir. Environmental Geochemistry and Health, 2020, 42, 77-94.	3.4	43
18	Risk assessment of radon in drinking water in Khetri Copper Belt of Rajasthan, India. Chemosphere, 2020, 239, 124782.	8.2	62

#	Article	IF	CITATIONS
19	Assessment of radiological impacts of natural radionuclides and radon exhalation rate measured in the soil samples of Himalayan foothills of Uttarakhand, India. Journal of Radioanalytical and Nuclear Chemistry, 2020, 323, 263-274.	1.5	23
20	ASSESSMENT OF DOSE DUE TO AMBIENT Rn222/Rn220 PROGENY IN DIFFERENT DWELLINGS OF JAMMU AND KASHMIR STATE, INDIA. Radiation Protection Dosimetry, 2020, 188, 162-173.	0.8	0
21	Determination of terrestrial radionuclides and related radiological risks in the soils from Pangi Valley of Chamba, Himachal Pradesh, India. Journal of Physics: Conference Series, 2020, 1531, 012035.	0.4	2
22	Dosimetric impact of natural terrestrial radioactivity on residents of lower Himalayas, India. Environmental Geochemistry and Health, 2020, , 1.	3.4	3
23	DOSE ASSESSMENT OF NATURAL TERRESTRIAL RADIONUCLIDES IN COMMONLY CONSUMED FOODS IN NORTH INDIA. Radiation Protection Dosimetry, 2020, 189, 362-370.	0.8	1
24	Role of SiO2 optically active mediators to tailor optical and electro-optical properties of ferroelectric liquid crystalline nanocomposites. Journal of Molecular Liquids, 2020, 314, 113580.	4.9	10
25	Risk assessment of 226Ra and 222Rn from the drinking water in the Jalandhar and Kapurthla districts of Punjab. SN Applied Sciences, 2020, 2, 1.	2.9	2
26	Radiological and pollution risk assessments of terrestrial radionuclides and heavy metals in a mineralized zone of the siwalik region (India). Chemosphere, 2020, 254, 126857.	8.2	36
27	Toxicological risk assessment of protracted ingestion of uranium in groundwater. Environmental Geochemistry and Health, 2019, 41, 681-698.	3.4	22
28	Radiation hazards associated with radionuclides and theoretical evaluation of indoor radon concentration from soil exhalation of Udhampur District, Jammu and Kashmir State, India. Journal of Soils and Sediments, 2019, 19, 1441-1455.	3.0	11
29	ZnO/FLC nanocomposites with low driving voltage and non-volatile memory for information storage applications. Current Applied Physics, 2019, 19, 1374-1378.	2.4	13
30	Structural, photoluminescence and dielectric investigations of phosphatic shale. Luminescence, 2019, 34, 212-221.	2.9	2
31	INGESTION AND INHALATION DOSES DUE TO INTAKE OF RADON IN DRINKING WATER SAMPLES OF AMRITSAR PROVINCE, PUNJAB, INDIA. Radiation Protection Dosimetry, 2019, 187, 230-242.	0.8	6
32	High-energy 120ÂMeV Au9+ ion beam-induced modifications and evaluation of craters in surface morphology of SnO2 and TiO2 nanocomposite thin films. Applied Nanoscience (Switzerland), 2019, 9, 1265-1280.	3.1	15
33	High energy (150†MeV) Fe11+ ion beam induced modifications of physico-chemical and photoluminescence properties of high-k dielectric nanocrystalline zirconium oxide thin films. Ceramics International, 2019, 45, 18887-18898.	4.8	12
34	Age-dependent ingestion and inhalation doses due to intake of uranium and radon in water samples of Shiwalik Himalayas of Jammu and Kashmir, India. Environmental Monitoring and Assessment, 2019, 191, 224.	2.7	14
35	Quantification of an alpha flux based radiological dose from seasonal exposure to 222Rn, 220Rn and their different EEC species. Scientific Reports, 2019, 9, 2515.	3.3	18
36	Measurement of uranium and radon concentration in drinking water samples and assessment of ingestion dose to local population in Jalandhar district of Punjab, India. Indoor and Built Environment, 2019, 28, 611-618.	2.8	22

#	Article	IF	CITATIONS
37	Seasonal Variation of Indoor Radon (222Ra) and Thoron (220Ra) in the Dwellings of Bathinda District of Punjab, India. Asian Journal of Biological and Life Sciences, 2019, 8, 68-75.	0.3	6
38	Assessment of progeny concentrations of 222Rn/220Rn and their related doses using deposition-based direct progeny sensors. Environmental Science and Pollution Research, 2018, 25, 11440-11453.	5.3	20
39	Estimation of 222 Rn exhalation rate and assessment of radiological risk from activity concentration of 226 Ra, 232 Th and 40 K. Journal of Geochemical Exploration, 2018, 184, 304-310.	3.2	47
40	Estimation of terrestrial radionuclide concentration and effect of soil parameters on exhalation and emanation rate of radon. Journal of Geochemical Exploration, 2018, 184, 296-303.	3.2	26
41	Radiological variation of indoor radon and thoron levels by pinhole dosimeter in different seasons. Indoor and Built Environment, 2018, 27, 1001-1014.	2.8	4
42	Comparative study of ²²² Rn/ ²²⁰ Rn progeny concentration and estimation of age-dependent dose due to inhalation of radon progeny for different body organs. Human and Ecological Risk Assessment (HERA), 2018, 24, 534-550.	3.4	4
43	Assessment of radon concentration and heavy metal contamination in groundwater of Udhampur district, Jammu & Kashmir, India. Environmental Geochemistry and Health, 2018, 40, 815-831.	3.4	31
44	Dose assessment from exposure to radon, thoron and their progeny concentrations in the dwellings of sub-mountainous region of Jammu & Kashmir, India. Journal of Radioanalytical and Nuclear Chemistry, 2018, 315, 75-88.	1.5	23
45	Structural and luminescent characterisation of uraniferous fluorapatite and haematite associated with phosphatic rocks of the Bijawar group in Sagar District, Madhya Pradesh (India). Journal of Earth System Science, 2018, 127, 1.	1.3	0
46	Systematic study of rigid triaxiality in Ba–Pt nuclei and role of \$\$Z=64\$\$ Z = 64 subshell effect. Pramana - Journal of Physics, 2018, 91, 1.	1.8	4
47	AGE-DEPENDENT INHALATION DOSE DUE TO EXPOSURE OF SHORT LIVED PROGENY OF RADON AND THORON FOR DIFFERENT AGE GROUPS IN JAMMU & amp; KASHMIR, HIMALAYAS. Radiation Protection Dosimetry, 2018, 182, 427-437.	0.8	5
48	Assessment of primordial and anthropogenic radionuclide contents in the soil samples of lower Himalayas of Jammu & Kashmir, India. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317, 1165-1174.	1.5	12
49	Systematic study of the nature of gamma bands in A = 100–200 mass nuclei. Modern Physics Letters A, 2018, 33, 1850118.	1.2	1
50	Human health risk assessment from exposure of heavy metals in soil samples of Jammu district of Jammu and Kashmir, India. Arabian Journal of Geosciences, 2018, 11, 1.	1.3	27
51	Risk estimation and multivariate statistical analysis of the heavy metal content of drinking water samples. Toxicology and Industrial Health, 2018, 34, 714-725.	1.4	6
52	Assessment of gamma radiation and associated radiation hazards in coastal sediments of south east coast of Tamilnadu, India with statistical approach. Ecotoxicology and Environmental Safety, 2018, 162, 521-528.	6.0	23
53	Assessment of Soil Gas Radon and Exhalation Studies in Lower Himalayan Region of Jammu and Kashmir State, India. Pure and Applied Geophysics, 2018, 175, 4411-4426.	1.9	7
54	Estimation of natural radionuclides in the soil samples and its radiological impact on human health. Radiation Effects and Defects in Solids, 2018, 173, 673-682.	1.2	6

#	Article	IF	CITATIONS
55	Study of radon/thoron exhalation rate, soil-gas radon concentration, and assessment of indoor radon/thoron concentration in Siwalik Himalayas of Jammu & Kashmir. Human and Ecological Risk Assessment (HERA), 2018, 24, 2275-2287.	3.4	28
56	Preparation of YZT a mixed conductor by microwave processing: A different mechanism in the solid state thermochemical reaction. Materials Chemistry and Physics, 2018, 216, 372-379.	4.0	5
57	Measurement of Radon Concentration in Drinking Water in Bhiwani District of Haryana. Journal of the Geological Society of India, 2018, 91, 700-703.	1.1	15
58	Seasonal variation of indoor and outdoor gamma dose rates of Reasi district of Jammu and Kashmir. Nuclear Technology and Radiation Protection, 2018, 33, 106-111.	0.8	6
59	Assessment of radon concentration and heavy metal contamination in groundwater samples from some areas of Fazilka district, Punjab, India. Indoor and Built Environment, 2017, 26, 368-374.	2.8	15
60	Assessment of lung dose from indoor 222Rn and 220Rn exposure in the Jalandhar and Kapurthala districts of Punjab, India. Indoor and Built Environment, 2017, 26, 1305-1310.	2.8	11
61	Assessment of age-dependent radiation dose and toxicity risk due to intake of uranium through the ingestion of groundwater from Northern Rajasthan, India. Toxicological and Environmental Chemistry, 2017, 99, 516-524.	1.2	20
62	Radon levels in drinking water of Fatehabad district of Haryana, India. Applied Radiation and Isotopes, 2017, 123, 36-40.	1.5	42
63	Potential effect of natural radionuclides in riverbed sediments: a statistical approach based on granulometric and magnetic mineral differences. Environmental Earth Sciences, 2017, 76, 1.	2.7	4
64	Assessment of Radiation Dose from Exposure to Radon in Drinking Water from Western Haryana, India. International Journal of Environmental Research, 2017, 11, 141-147.	2.3	44
65	Radiation dose-dependent risk on individuals due to ingestion of uranium and radon concentration in drinking water samples of four districts of Haryana, India. Radiation Effects and Defects in Solids, 2017, 172, 441-455.	1.2	20
66	Discrete Wavelet Transform Method for High Flux \$n-gamma \$ Discrimination With Liquid Scintillators. IEEE Transactions on Nuclear Science, 2017, 64, 1927-1933.	2.0	14
67	Measurement of radon exhalation rate in various building materials and soil samples. Journal of Earth System Science, 2017, 126, 1.	1.3	22
68	Assessment of attached and unattached progeny concentrations of 222Rn/220Rn and their contribution to dose using deposition-based progeny sensors. Environmental Earth Sciences, 2017, 76, 1.	2.7	13
69	Assessment of uranium in correlation with physico-chemical properties of drinking water of Northern Rajasthan. Journal of the Geological Society of India, 2017, 90, 233-238.	1.1	17
70	Risk assessment of metals from groundwater in northeast Rajasthan. Journal of the Geological Society of India, 2017, 90, 77-84.	1.1	54
71	Comparative Study of Radon Concentration with Two Techniques and Elemental Analysis in Drinking Water Samples of the Jammu District, Jammu and Kashmir, India. Health Physics, 2017, 113, 271-281.	0.5	11
72	Ingestion doses and hazard quotients due to intake of Uranium in drinking water from Udhampur District of Jammu and Kashmir State, India. Radioprotection, 2017, 52, 109-118.	1.0	7

#	Article	IF	CITATIONS
73	Assessment of indoor radon, thoron concentrations, and their relationship with seasonal variation and geology of Udhampur district, Jammu & Kashmir, India. International Journal of Occupational and Environmental Health, 2017, 23, 202-214.	1.2	26
74	Estimation of Radiological Dose From Progeny of ²²² Rn and ²²⁰ Rn Using DTPS/DRPS and Wire-Mesh-Capped Progeny Sensors. Dose-Response, 2016, 14, 155932581668088.	1.6	1
75	ASSESSMENT OF INHALATION DOSE FROM THE INDOOR ²²² Rn AND ²²⁰ Rn USING RAD7 AND PINHOLE CUP DOSEMETERS. Radiation Protection Dosimetry, 2016, 171, 208-211.	0.8	12
76	Radon levels in drinking water and soil samples of Jodhpur and Nagaur districts of Rajasthan, India. Applied Radiation and Isotopes, 2016, 113, 53-59.	1.5	27
77	Estimation of radon concentration in soil and groundwater samples of Northern Rajasthan, India. Journal of Radiation Research and Applied Sciences, 2016, 9, 125-130.	1.2	37
78	STUDY OF NATURAL RADIOACTIVITY (²²⁶ Ra, ²³² Th AND ⁴⁰ K) IN SOIL SAMPLES FOR THE ASSESSMENT OF AVERAGE EFFECTIVE DOSE AND RADIATION HAZARDS. Radiation Protection Dosimetry, 2016, 171, 277-281.	0.8	17
79	Quantification and assessment of health risk due to ingestion of uranium in groundwater of Jammu district, Jammu & Kashmir, India. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310, 793-804.	1.5	26
80	Exposure assessment of natural uranium from drinking water. Environmental Sciences: Processes and Impacts, 2016, 18, 1540-1549.	3.5	20
81	RADIATION DOSE DUE TO RADON AND HEAVY METAL ANALYSIS IN DRINKING WATER SAMPLES OF JAMMU DISTRICT, JAMMU & amp; KASHMIR, INDIA. Radiation Protection Dosimetry, 2016, 171, 217-222.	0.8	21
82	Study of variation of ²²² Rn/ ²²⁰ Rn and their progeny concentration in dwellings using single entry pin hole-based diffusion chambers. Indoor and Built Environment, 2016, 25, 390-396.	2.8	1
83	Annual effective dose of radon due to exposure in indoor air and groundwater in Bathinda district of Punjab. Indoor and Built Environment, 2016, 25, 848-856.	2.8	7
84	A study of radon concentration in drinking water samples of Amritsar city of Punjab (India). Radiation Protection and Environment, 2016, 39, 13.	0.2	24
85	Variation of annual effective dose due to radon level in indoor air in Marwar region of Rajasthan, India. AIP Conference Proceedings, 2015, , .	0.4	0
86	222Rn and 220Rn levels of Mansa and Muktsar district of Punjab, India. Frontiers in Environmental Science, 2015, 3, .	3.3	7
87	Evaluation and analysis of ²²⁶ Ra, <sup align="right">232Th and ⁴⁰K and radon exhalation rate in the soil samples for health risk assessment. International Journal of Low Radiation, 2015, 10, 1.</sup 	0.1	6
88	Estimation of attached and unattached progeny of 222Rn and 220Rn concentration using deposition based progeny sensors. Radiation Protection Dosimetry, 2015, 167, 92-96.	0.8	9
89	Magnetic, chemical and radionuclide studies of river sediments and their variation with different physiographic regions of Bharathapuzha river, southwestern India. Studia Geophysica Et Geodaetica, 2015, 59, 438-460.	0.5	17
90	Variation of naturally occurring radionuclides, dose rate and mineral characteristics with particle size and altitude in bottom sediments of a river originating from Anamalai hills in the Western Ghats of India. Environmental Earth Sciences, 2015, 74, 3467-3483.	2.7	3

#	Article	IF	CITATIONS
91	Assessment of natural radionuclides in the soil samples from Marwar region of Rajasthan, India. Applied Radiation and Isotopes, 2015, 101, 122-126.	1.5	35
92	Study of radium and radon exhalation rate in soil samples from areas of northern Rajasthan. Journal of the Geological Society of India, 2015, 86, 331-336.	1.1	10
93	An investigation of factors influencing indoor radon concentrations in dwellings of Northern Rajasthan, India. Journal of the Geological Society of India, 2015, 86, 173-180.	1.1	7
94	Long-term simultaneous measurement of indoor concentration of radon and thoron progeny in the dwellings of Una and Hamirpur District of Himachal Pradesh. Indoor and Built Environment, 2015, 24, 843-851.	2.8	1
95	Estimation of EEC, unattached fraction and equilibrium factor for the assessment of radiological dose using pin-hole cup dosimeters and deposition based progeny sensors. Journal of Environmental Radioactivity, 2015, 148, 67-73.	1.7	31
96	Radiation impact assessment of naturally occurring radionuclides and magnetic mineral studies of Bharathapuzha river sediments, South India. Environmental Earth Sciences, 2014, 71, 3593.	2.7	5
97	Assessment of natural radioactivity levels and associated dose rates in soil samples from Northern Rajasthan, India. Radiation Protection Dosimetry, 2014, 158, 235-240.	0.8	35
98	Properties of Ferroelectric Liquid Crystal/Multiwall Carbon Nanotube Doped Composite. Integrated Ferroelectrics, 2014, 158, 123-130.	0.7	5
99	Evaluation of natural radioactivity and its associated health hazard indices of a south Indian river. Radiation Protection Dosimetry, 2014, 162, 364-374.	0.8	6
100	Assessment of radiation hazards due to the concentration of natural radionuclides in the environment. Environmental Earth Sciences, 2014, 71, 901-909.	2.7	17
101	Distribution of natural radioactivity in soil samples and radiological hazards in building material of Una, Himachal Pradesh. Journal of Geochemical Exploration, 2014, 142, 11-15.	3.2	32
102	Estimation of annual effective dose from indoor radon/thoron concentrations and measurement of radon concentrations in soil. Radiation Protection Dosimetry, 2014, 158, 111-114.	0.8	2
103	Measurement of indoor radon concentration and assessment of doses in different districts of Northern Rajasthan, India. Indoor and Built Environment, 2014, 23, 1142-1150.	2.8	14
104	Measurement of soil-gas radon in some areas of northern Rajasthan, India. Journal of Earth System Science, 2014, 123, 1241-1247.	1.3	20
105	Determination of some carcinogenic PAHs with toxic equivalency factor along roadside soil within a fast developing northern city of India. Journal of Earth System Science, 2014, 123, 479-489.	1.3	32
106	A study of seasonal variations of radon levels in different types of dwellings in Sri Ganganagar district, Rajasthan. Journal of Radiation Research and Applied Sciences, 2014, 7, 201-206.	1.2	20
107	Estimation of annual effective dose due to Radon level in indoor air and soil gas in Hamirpur district of Himachal Pradesh. Journal of Geochemical Exploration, 2014, 142, 16-20.	3.2	30
108	Monitoring of metal contaminations in groundwater in Northern Rajasthan, India. Journal of Environmental and Occupational Science, 2014, 3, 114.	0.2	8

#	Article	IF	CITATIONS
109	Influence of ZnO nanoparticle concentration on electro-optic and dielectric properties of ferroelectric liquid crystal mixture. Journal of Molecular Liquids, 2013, 188, 230-236.	4.9	47
110	Radon monitoring in groundwater samples from some areas of northern Rajasthan, India, using a RAD7 detector. Radiation Protection Dosimetry, 2013, 153, 496-501.	0.8	47
111	Determination of 222RN level in groundwater using a Rad7 detector in the Bathinda district of Punjab, India. Radiation Protection Dosimetry, 2013, 156, 239-245.	0.8	47
112	Observation of memory behaviour in cadmium sulphide nanorods doped ferroelectric liquid crystal mixture. Phase Transitions, 2013, 86, 1256-1266.	1.3	17
113	Analysis of Uranium Concentration in Drinking Water Samples Using ICPMS. Health Physics, 2013, 104, 251-255.	0.5	49
114	Analysis of radon concentration in drinking water in Hanumangarh district of Rajasthan, India. Radiation Protection and Environment, 2013, 36, 65.	0.2	16
115	Determination of radon level and radon effective dose rate using SSNTD in dwellings in the Bathinda district of Punjab, India. Radiation Protection Dosimetry, 2012, 152, 25-28.	0.8	3
116	Studying the Variation of Indoor Radon Levels in Different Dwellings in Hoshiarpur District of Punjab, India. Indoor and Built Environment, 2012, 21, 601-606.	2.8	9
117	Primordial radioactivity (238U, 232Th and 40K) measurements for soils of Ludhiana district of Punjab, India. Radiation Protection Dosimetry, 2012, 152, 29-32.	0.8	10
118	Electro-optic and dielectric studies of silica nanoparticle doped ferroelectric liquid crystal in SmC* phase. Phase Transitions, 2012, 85, 244-254.	1.3	53
119	Life time fatality risk assessment due to variation of indoor radon concentration in dwellings in western Haryana, India. Applied Radiation and Isotopes, 2012, 70, 1110-1112.	1.5	22
120	Electrooptic and Dielectric Studies in Cadmium Sulphide Nanorods/Ferroelectric Liquid Crystal Mixtures. Advances in Condensed Matter Physics, 2012, 2012, 1-8.	1.1	22
121	Electro-optic, thermo-optic and dielectric responses of multiwalled carbon nanotube doped ferroelectric liquid crystal thin films. Journal of Molecular Liquids, 2012, 165, 7-11.	4.9	57
122	Dielectric Studies and Memory Effect in Nanoparticle Doped Ferroelectric Liquid Crystal Films. Molecular Crystals and Liquid Crystals, 2011, 541, 243/[481]-251/[489].	0.9	31
123	Measurement of indoor radon concentration in the dwellings of Western Haryana, India, for health risk assessment. International Journal of Low Radiation, 2011, 8, 122.	0.1	2
124	Assessment of the average effective dose from the analysis of 226Ra, 232Th and 40K in soil samples from Punjab, India. Geochemical Journal, 2011, 45, 497-503.	1.0	7
125	Assessment of seasonal indoor radon concentration in dwellings of Western Haryana. Radiation Measurements, 2011, 46, 1803-1806.	1.4	14
126	Assessment of radiation dose due to natural radionuclides in various cement samples. International Journal of Low Radiation, 2011, 8, 156.	0.1	0

#	Article	IF	CITATIONS
127	Measurement of Radioactivity of ²³⁸ U, ²²⁶ Ra, ²³² Th and ⁴⁰ K in Soil of Different Geological Origins in Northern India. Journal of Environmental Protection, 2011, 02, 960-966.	0.7	14
128	Measurements of ²²⁶ Ra, ²³² Th and <sup align=right>40K using gamma spectrometry to assess a first-order exposure risk for residents of Western Haryana, India. International Journal of Low Radiation, 2010, 7, 198.</sup 	0.1	2
129	Analysis of terrestrial naturally occurring radionuclides in soil samples from some areas of Sirsa district of Haryana, India using gamma ray spectrometry. Environmental Earth Sciences, 2010, 59, 1159-1164.	2.7	48
130	Measurement of thoron and radon progeny in outdoors of Sirsa, India, using defined solid angle absolute beta counting. Radiation Protection Dosimetry, 2010, 141, 400-403.	0.8	1
131	Analysis of 226Ra, 232Th and 40K in soil samples for the assessment of the average effective dose. Indian Journal of Physics, 2009, 83, 1031-1037.	1.8	19
132	Passive integrating radon studies for environmental monitoring in Sirsa district, Haryana, India using solid state nuclear track detectors. Indian Journal of Physics, 2009, 83, 1191-1196.	1.8	10
133	Measurement of indoor radon levels in dwellings of Sirsa district, Haryana and estimation of average annual dose. , 2009, 51, 103-6.		0
134	Uranium studies in water samples belonging to Malwa region of Punjab, using track etching technique. Radiation Measurements, 2007, 42, 441-445.	1.4	44
135	226Ra, 232Th and 40K analysis in soil samples from some areas of Malwa region, Punjab, India using gamma ray spectrometry. Environmental Monitoring and Assessment, 2007, 134, 333-342.	2.7	61
136	A Study of Uranium, Radium, Radon Exhalation Rate and Indoor Radon in the Environs of Some Areas of the Malwa Region, Punjab. Indoor and Built Environment, 2006, 15, 499-505.	2.8	59
137	Measurement of radon and thoron progeny outdoors in Malout, India, using grab aerosol sampling and beta counting. Radiation Measurements, 2006, 41, 108-111.	1.4	6
138	Seasonal variation of indoor radon in dwellings of Malwa region, Punjab. Atmospheric Environment, 2005, 39, 7761-7767.	4.1	46
139	Uranium, radium and radon exhalation studies in geological samples belonging to some areas of punjab, using track etching technique. , 2005, 47, 85-90.		1
140	Quantification of health risks and spatial distribution of heavy metals in groundwater of Lower Himalayas, India. International Journal of Environmental Science and Technology, 0, , 1.	3.5	3
141	Radiological risk assessment due to attached/unattached fractions of radon and thoron progeny in Hanumangarh district, Rajasthan. Journal of Radioanalytical and Nuclear Chemistry, 0, , 1.	1.5	10
142	A comprehensive study of exhalation rates in soil samples to understand the high-risk potential area in Barnala and Moga districts of Punjab, India. Journal of Radioanalytical and Nuclear Chemistry, 0, , 1.	1.5	2