Maura Malpetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1880194/publications.pdf

Version: 2024-02-01

38	1,055	16	30
papers	citations	h-index	g-index
53	53	53	1441
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Molecular pathology and synaptic loss in primary tauopathies: an 18F-AV-1451 and 11C-UCB-J PET study. Brain, 2022, 145, 340-348.	7.6	21
2	Lifelong bilingualism and mechanisms of neuroprotection inÂAlzheimer dementia. Human Brain Mapping, 2022, 43, 581-592.	3.6	7
3	InÂVivo ¹⁸ F-Flortaucipir PET Does Not Accurately Support the Staging of Progressive Supranuclear Palsy. Journal of Nuclear Medicine, 2022, 63, 1052-1057.	5.0	9
4	Differential levels of plasma biomarkers of neurodegeneration in Lewy body dementia, Alzheimer's disease, frontotemporal dementia and progressive supranuclear palsy. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 651-658.	1.9	64
5	Locus Coeruleus Integrity from <scp>7 T MRI</scp> Relates to Apathy and Cognition in Parkinsonian Disorders. Movement Disorders, 2022, 37, 1663-1672.	3.9	23
6	Tau Beats Amyloid in Predicting Brain Atrophy in Alzheimer Disease: Implications for Prognosis and Clinical Trials. Journal of Nuclear Medicine, 2022, 63, 830-832.	5.0	7
7	lmaging Alzheimer's pathology stage by stage. Nature Aging, 2022, 2, 465-467.	11.6	1
8	Amyloid, tau and metabolic PET correlates of cognition in early and late-onset Alzheimer's disease. Brain, 2022, 145, 4489-4505.	7.6	23
9	Imaging tau burden in dementia with Lewy bodies using [18F]-AV1451 positron emission tomography. Neurobiology of Aging, 2021, 101, 172-180.	3.1	14
10	Apathy in presymptomatic genetic frontotemporal dementia predicts cognitive decline and is driven by structural brain changes. Alzheimer's and Dementia, 2021, 17, 969-983.	0.8	31
11	In vivo PET imaging of neuroinflammation in familial frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 319-322.	1.9	21
12	In vivo neuroinflammation and cerebral small vessel disease in mild cognitive impairment and Alzheimer's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 45-52.	1.9	38
13	Looking beneath the surface: the importance of subcortical structures in frontotemporal dementia. Brain Communications, 2021, 3, fcab158.	3.3	22
14	Clinical progression of progressive supranuclear palsy: impact of trials bias and phenotype variants. Brain Communications, 2021, 3, fcab206.	3.3	12
15	[18F]-AV-1451 binding in the substantia nigra as a marker of neuromelanin in Lewy body diseases. Brain Communications, 2021, 3, fcab177.	3.3	2
16	Validation of the new pathology staging system for progressive supranuclear palsy. Acta Neuropathologica, 2021, 141, 787-789.	7.7	8
17	Neuroinflammation predicts disease progression in progressive supranuclear palsy. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 769-775.	1.9	40
18	In vivo coupling of dendritic complexity with presynaptic density in primary tauopathies. Neurobiology of Aging, 2021, 101, 187-198.	3.1	17

#	Article	IF	Citations
19	Synaptic density in carriers of C9orf72 mutations: a [¹¹ C]UCB†PET study. Annals of Clinical and Translational Neurology, 2021, 8, 1515-1523.	3.7	27
20	Measuring cerebral perfusion with [11C]-PiB R1 in Down syndrome: associations with amyloid burden and longitudinal cognitive decline. Brain Communications, 2021, 3, fcaa198.	3.3	3
21	Neuroinflammation in medial temporal regions predicts cognitive decline in dementia with Lewy bodies. Alzheimer's and Dementia, 2021, 17, .	0.8	O
22	Microglial activation and atrophy in frontal cortex predict executive dysfunction in frontotemporal dementia. Alzheimer's and Dementia, 2021, 17, .	0.8	3
23	18F-AV1451 PET imaging and multimodal MRI changes in progressive supranuclear palsy. Journal of Neurology, 2020, 267, 341-349.	3.6	21
24	Synaptic Loss in Primary Tauopathies Revealed by [<scp>¹¹C</scp>] <scp>UCBâ€∮</scp> Positron Emission Tomography. Movement Disorders, 2020, 35, 1834-1842.	3.9	61
25	Neuroinflammation and Tau Colocalize in vivo in Progressive Supranuclear Palsy. Annals of Neurology, 2020, 88, 1194-1204.	5.3	38
26	The prognostic role of microglia and tau PET in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e039817.	0.8	1
27	Microglial activation and tau burden predict cognitive decline in Alzheimer's disease. Brain, 2020, 143, 1588-1602.	7.6	113
28	Gray matter changes related to microglial activation in Alzheimer's disease. Neurobiology of Aging, 2020, 94, 236-242.	3.1	13
29	Peak Width of Skeletonized Mean Diffusivity as a Marker of Diffuse Cerebrovascular Damage. Frontiers in Neuroscience, 2020, 14, 238.	2.8	24
30	Cortical Complexity Analyses and Their Cognitive Correlate in Alzheimer's Disease and Frontotemporal Dementia. Journal of Alzheimer's Disease, 2020, 76, 331-340.	2.6	31
31	Asymmetrical atrophy of thalamic subnuclei in Alzheimer's disease and amyloidâ€positive mild cognitive impairment is associated with key clinical features. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 690-699.	2.4	26
32	Variant-specific vulnerability in metabolic connectivity and resting-state networks in behavioural variant of frontotemporal dementia. Cortex, 2019, 120, 483-497.	2.4	18
33	ICâ€Pâ€088: MICROGLIAL ACTIVATION AND TAU BURDEN PREDICT COGNITIVE DECLINE IN ALZHEIMER'S DISEASE Alzheimer's and Dementia, 2019, 15, P78.	E.O.8	0
34	High body mass index, brain metabolism and connectivity: an unfavorable effect in elderly females. Aging, 2019, 11, 8573-8586.	3.1	20
35	Unfavourable gender effect of high body mass index on brain metabolism and connectivity. Scientific Reports, 2018, 8, 12584.	3.3	17
36	Effects of High BMI on Synaptic Function and Metabolic Connectivity in the Brainâ€"Evidence of Gender Difference. Diabetes, 2018, 67, .	0.6	1

#	Article	IF	CITATIONS
37	The impact of bilingualism on brain reserve and metabolic connectivity in Alzheimer's dementia. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1690-1695.	7.1	164
38	Gender differences in healthy aging and Alzheimer's Dementia: A ¹⁸ Fâ€FDGâ€PET study of brain and cognitive reserve. Human Brain Mapping, 2017, 38, 4212-4227.	3.6	87