
Simonetta Baraldo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1880083/publications.pdf Version: 2024-02-01

SIMONETTA RADALDO

#	Article	IF	CITATIONS
1	Multidimensional 3-Month Follow-Up of Severe COVID-19: Airways beyond the Parenchyma in Symptomatic Patients. Journal of Clinical Medicine, 2022, 11, 4046.	2.4	7
2	Low-Blood Lymphocyte Number and Lymphocyte Decline as Key Factors in COPD Outcomes: A Longitudinal Cohort Study. Respiration, 2021, 100, 618-630.	2.6	8
3	Influence of Cell Quality on Inflammatory Biomarkers in COPD Sputum Supernatant. International Journal of COPD, 2021, Volume 16, 487-493.	2.3	3
4	Prognostic role of MUC5B rs35705950 genotype in patients with idiopathic pulmonary fibrosis (IPF) on antifibrotic treatment. Respiratory Research, 2021, 22, 98.	3.6	21
5	Air Pollution Relates to Airway Pathology in Wheezing Children. Annals of the American Thoracic Society, 2021, 18, 2033-2040.	3.2	11
6	Critical Review of the Evolution of Extracellular Vesicles' Knowledge: From 1946 to Today. International Journal of Molecular Sciences, 2021, 22, 6417.	4.1	64
7	Risk Factors for Development and Severity of COVID-19 in COPD Patients. Frontiers in Medicine, 2021, 8, 714570.	2.6	6
8	Pneumothorax and/or Pneumomediastinum Worsens the Prognosis of COVID-19 Patients with Severe Acute Respiratory Failure: A Multicenter Retrospective Case-Control Study in the North-East of Italy. Journal of Clinical Medicine, 2021, 10, 4835.	2.4	12
9	Air Pollution Exposure Impairs Airway Epithelium IFN-β Expression in Pre-School Children. Frontiers in Immunology, 2021, 12, 731968.	4.8	7
10	Airway inflammatory profile is correlated with symptoms in stable COPD: A longitudinal proofâ€ofâ€concept cohort study. Respirology, 2020, 25, 80-88.	2.3	20
11	Blood eosinophils relate to atopy and not to tissue eosinophils in wheezing children. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1497-1501.	5.7	3
12	CA 19-9 serum levels in patients with end-stage idiopathic pulmonary fibrosis (IPF) and other interstitial lung diseases (ILDs): Correlation with functional decline. Chronic Respiratory Disease, 2020, 17, 147997312095842.	2.4	9
13	Heart Failure is Highly Prevalent and Difficult to Diagnose in Severe Exacerbations of COPD Presenting to the Emergency Department. Journal of Clinical Medicine, 2020, 9, 2644.	2.4	9
14	Early Airway Pathological Changes in Children: New Insights into the Natural History of Wheezing. Journal of Clinical Medicine, 2019, 8, 1180.	2.4	9
15	Exome Sequencing Reveals Immune Genes as Susceptibility Modifiers in Individuals with α1-Antitrypsin Deficiency. Scientific Reports, 2019, 9, 13088.	3.3	7
16	Advances in chronic obstructive pulmonary disease genetics: building the picture one piece at a time. Lancet Respiratory Medicine,the, 2019, 7, 371-372.	10.7	2
17	Deficient Immune Response to Viral Infections in Children Predicts Later Asthma Persistence. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 673-675.	5.6	15
18	Anti-inflammatory effects of roflumilast in chronic obstructive pulmonary disease (ROBERT): a 16-week, randomised, placebo-controlled trial. Lancet Respiratory Medicine,the, 2018, 6, 827-836.	10.7	46

#	Article	IF	CITATIONS
19	Clinical and Pathologic Factors Predicting Future Asthma in Wheezing Children. A Longitudinal Study. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 458-466.	2.9	27
20	α1-Antitrypsin Polymerizes in Alveolar Macrophages of Smokers With and Without α1-Antitrypsin Deficiency. Chest, 2018, 154, 607-616.	0.8	22
21	Dual polarization of human alveolar macrophages progressively increases with smoking and COPD severity. Respiratory Research, 2017, 18, 40.	3.6	92
22	IFN-α/IFN-λ responses to respiratory viruses in paediatric asthma. European Respiratory Journal, 2017, 49, 1602489.	6.7	1
23	Exome sequencing in diseased and healthy subjects with $\hat{I}\pm 1$ antitrypsin deficiency. , 2017, , .		1
24	Which CD8+ T-cells in asthma? Attacking or defending?. European Respiratory Journal, 2016, 48, 287-290.	6.7	7
25	Alpha-1 Antitrypsin Deficiency: Beyond the Protease/Antiprotease Paradigm. Annals of the American Thoracic Society, 2016, 13, S305-S310.	3.2	32
26	Alpha-1 Antitrypsin Deficiency Today: New Insights in the Immunological Pathways. Respiration, 2016, 91, 380-385.	2.6	13
27	Immune Inflammation and Disease Progression in Idiopathic Pulmonary Fibrosis. PLoS ONE, 2016, 11, e0154516.	2.5	87
28	Telomeropathies: an emerging spectrum of disorders with important implications for patients with interstitial lung disease. Minerva Medica, 2016, , .	0.9	0
29	Inhaled Glucocorticoids and COPD Exacerbations. New England Journal of Medicine, 2015, 372, 92-94.	27.0	9
30	Immune Activation in α ₁ -Antitrypsin-Deficiency Emphysema. Beyond the Protease–Antiprotease Paradigm. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 402-409.	5.6	56
31	Decreased Maturation of Dendritic Cells in the Central Airways of COPD Patients Is Associated with VEGF, TGF-تزبا⁄2 and Vascularity. Respiration, 2014, 87, 234-242.	2.6	20
32	Rhinovirus-induced interferon production in asthma. Thorax, 2014, 69, 772-772.	5.6	3
33	Pathology of COPD and Asthma. , 2014, , 25-36.		1
34	Ceramide Expression and Cell Homeostasis in Chronic Obstructive Pulmonary Disease. Respiration, 2013, 85, 342-349.	2.6	36
35	Expression of the Atypical Chemokine Receptor D6 in Human Alveolar Macrophages in COPD. Chest, 2013, 143, 98-106.	0.8	36
36	Mast Cell Infiltration Discriminates between Histopathological Phenotypes of Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 233-239.	5.6	54

#	Article	IF	CITATIONS
37	Pathophysiology of the Small Airways in Chronic Obstructive Pulmonary Disease. Respiration, 2012, 84, 89-97.	2.6	92
38	Deficient antiviral immune responses in childhood: Distinct roles of atopy and asthma. Journal of Allergy and Clinical Immunology, 2012, 130, 1307-1314.	2.9	167
39	Reduced apoptosis of CD8+ T-Lymphocytes in the airways of smokers with mild/moderate COPD. Respiratory Medicine, 2011, 105, 1491-1500.	2.9	20
40	Noneosinophilic asthma in children: relation with airway remodelling. European Respiratory Journal, 2011, 38, 575-583.	6.7	59
41	Markers of eosinophilic and neutrophilic inflammation in bronchoalveolar lavage of asthmatic and atopic children. Allergy: European Journal of Allergy and Clinical Immunology, 2010, 65, 978-985.	5.7	32
42	For Whom the "Alarm―Tolls. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 879-880.	5.6	2
43	A Novel Insight into Adaptive Immunity in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1011-1019.	5.6	62
44	Fixed airflow obstruction due to asthma or chronic obstructive pulmonary disease: 5-year follow-up. Journal of Allergy and Clinical Immunology, 2010, 125, 830-837.	2.9	121
45	Bronchial vascular remodelling in patients with COPD and its relationship with inhaled steroid treatment. Thorax, 2009, 64, 1019-1024.	5.6	31
46	MUC5AC expression is increased in bronchial submucosal glands of stable COPD patients. Histopathology, 2009, 55, 321-331.	2.9	83
47	Increased activation of p38 MAPK in COPD. European Respiratory Journal, 2008, 31, 62-69.	6.7	230
48	Montelukast inhibits inflammatory responses in small airways of the Guinea-pig. Pulmonary Pharmacology and Therapeutics, 2008, 21, 317-323.	2.6	13
49	To reg or not to reg: that is the question in COPD. European Respiratory Journal, 2008, 31, 486-488.	6.7	12
50	Nonatopic Children with Multitrigger Wheezing Have Airway Pathology Comparable to Atopic Asthma. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 476-482.	5.6	141
51	IL-32, a Novel Proinflammatory Cytokine in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 894-901.	5.6	146
52	The Role of Lymphocytes in the Pathogenesis of Asthma and COPD. Current Medicinal Chemistry, 2007, 14, 2250-2256.	2.4	43
53	The laws of attraction: chemokines, neutrophils and eosinophils in severe exacerbations of asthma. Thorax, 2007, 62, 465-466.	5.6	12
54	Matrix Metalloproteinase-2 Protein in Lung Periphery Is Related to COPD Progression. Chest, 2007, 132, 1733-1740.	0.8	65

#	Article	IF	CITATIONS
55	Chymase-positive mast cells play a role in the vascular component of airway remodeling inÂasthma. Journal of Allergy and Clinical Immunology, 2007, 120, 329-333.	2.9	75
56	Up-Regulated Membrane and Nuclear Leukotriene B4 Receptors in COPD. Chest, 2006, 129, 1523-1530.	0.8	34
57	Transforming growth factor-Â type II receptor in pulmonary arteries of patients with very severe COPD. European Respiratory Journal, 2006, 28, 556-562.	6.7	23
58	Upregulation of basic fibroblast growth factor in smokers with chronic bronchitis. European Respiratory Journal, 2006, 27, 957-963.	6.7	20
59	Epithelial Damage and Angiogenesis in the Airways of Children with Asthma. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 975-981.	5.6	300
60	Vascular endothelial growth factor upâ€regulation and bronchial wall remodelling in asthma. Clinical and Experimental Allergy, 2005, 35, 1437-1442.	2.9	160
61	Decreased expression of TGF-Â type II receptor in bronchial glands of smokers with COPD. Thorax, 2005, 60, 998-1002.	5.6	22
62	Endothelial Cell Activity in Chronic Obstructive Pulmonary Disease Without Severe Pulmonary Hypertension. Clinical and Applied Thrombosis/Hemostasis, 2005, 11, 435-440.	1.7	12
63	Marked alveolar apoptosis/proliferation imbalance in end-stage emphysema. Respiratory Research, 2005, 6, 14.	3.6	96
64	Inflammation in Lung Parenchyma. Lung Biology in Health and Disease, 2005, , 17-31.	0.1	0
65	Neutrophilic infiltration within the airway smooth muscle in patients with COPD. Thorax, 2004, 59, 308-312.	5.6	114
66	The pathology of COPD. , 2004, , 21-30.		2
67	Small airway morphology and lung function in the transition from normality to chronic airway obstruction. Journal of Applied Physiology, 2003, 95, 441-447.	2.5	45
68	Neutrophil Chemokines in Severe Exacerbations of Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 911-913.	5.6	19
69	Pathophysiology of the Small Airways. Seminars in Respiratory and Critical Care Medicine, 2003, 24, 465-472.	2.1	20
70	Airway Inflammation in Childhood Asthma. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 798-803.	5.6	194
71	Vascular Component of Airway Remodeling in Asthma Is Reduced by High Dose of Fluticasone. American Journal of Respiratory and Critical Care Medicine, 2003, 167, 751-757.	5.6	149
72	Interleukin-9 influences chemokine release in airway smooth muscle: role of ERK. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L1093-L1102.	2.9	42

#	Article	IF	CITATIONS
73	IL-13 and IL-4 promote TARC release in human airway smooth muscle cells: role of IL-4 receptor genotype. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L907-L914.	2.9	80
74	Increased proportion of CD8+ T-lymphocytes in the paratracheal lymph nodes of smokers with mild COPD. Sarcoidosis Vasculitis and Diffuse Lung Diseases, 2003, 20, 28-32.	0.2	29
75	Airway Inflammation in Severe Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2002, 166, 105-110.	5.6	210
76	Increased Expression of the Chemokine Receptor CXCR3 and Its Ligand CXCL10 in Peripheral Airways of Smokers with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2002, 165, 1404-1409.	5.6	321
77	Effect of IL-1β on CRE-dependent gene expression in human airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L1239-L1246.	2.9	19
78	Direct Effects of Interleukin-13 on Signaling Pathways for Physiological Responses in Cultured Human Airway Smooth Muscle Cells. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 141-148.	5.6	204
79	Goblet Cell Hyperplasia and Epithelial Inflammation in Peripheral Airways of Smokers with Both Symptoms of Chronic Bronchitis and Chronic Airflow Limitation. American Journal of Respiratory and Critical Care Medicine, 2000, 161, 1016-1021.	5.6	296
80	Partial Reversibility of Airflow Limitation and Increased Exhaled NO and Sputum Eosinophilia in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2000, 162, 1773-1777.	5.6	243
81	CD8 + ve Cells in the Lungs of Smokers with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 1999, 160, 711-717.	5.6	422