Alexander Loy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1880016/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbiome definition re-visited: old concepts and new challenges. Microbiome, 2020, 8, 103.	4.9	903
2	Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 5972-6016.	0.8	830
3	Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature, 2016, 537, 689-693.	13.7	629
4	Oligonucleotide Microarray for 16S rRNA Gene-Based Detection of All Recognized Lineages of Sulfate-Reducing Prokaryotes in the Environment. Applied and Environmental Microbiology, 2002, 68, 5064-5081.	1.4	622
5	Barcoded Primers Used in Multiplex Amplicon Pyrosequencing Bias Amplification. Applied and Environmental Microbiology, 2011, 77, 7846-7849.	1.4	514
6	Bacterial community composition and function in sewage treatment systems. Current Opinion in Biotechnology, 2002, 13, 218-227.	3.3	488
7	<i>amoA</i> â€based consensus phylogeny of ammoniaâ€oxidizing archaea and deep sequencing of <i>amoA</i> genes from soils of four different geographic regions. Environmental Microbiology, 2012, 14, 525-539.	1.8	485
8	probeBasean online resource for rRNA-targeted oligonucleotide probes: new features 2007. Nucleic Acids Research, 2007, 35, D800-D804.	6.5	421
9	Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME Journal, 2018, 12, 1715-1728.	4.4	347
10	probeBase: an online resource for rRNA-targeted oligonucleotide probes. Nucleic Acids Research, 2003, 31, 514-516.	6.5	345
11	Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek, 2002, 81, 665-680.	0.7	341
12	The Microbial Community Composition of a Nitrifying-Denitrifying Activated Sludge from an Industrial Sewage Treatment Plant Analyzed by the Full-Cycle rRNA Approach. Systematic and Applied Microbiology, 2002, 25, 84-99.	1.2	338
13	Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases. ISME Journal, 2015, 9, 1152-1165.	4.4	331
14	Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nature Microbiology, 2017, 2, 16215.	5.9	313
15	A â€~rare biosphere' microorganism contributes to sulfate reduction in a peatland. ISME Journal, 2010, 4, 1591-1602.	4.4	303
16	Temporal Bacterial Community Dynamics Vary Among Ulcerative Colitis Patients After Fecal Microbiota Transplantation. American Journal of Gastroenterology, 2013, 108, 1620-1630.	0.2	298
17	Phylotype-level 16S rRNA analysis reveals new bacterial indicators of health state in acute murine colitis. ISME Journal, 2012, 6, 2091-2106.	4.4	291
18	<scp><i>NxrB</i></scp> encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitriteâ€oxidizing <scp><i>N</i></scp> <i>itrospira</i> . Environmental Microbiology, 2014, 16, 3055-3071.	1.8	280

#	Article	IF	CITATIONS
19	Sulfate-reducing microorganisms in wetlands – fameless actors in carbon cycling and climate change. Frontiers in Microbiology, 2012, 3, 72.	1.5	264
20	The life sulfuric: microbial ecology of sulfur cycling in marine sediments. Environmental Microbiology Reports, 2017, 9, 323-344.	1.0	260
21	Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environmental Microbiology, 2007, 9, 131-142.	1.8	233
22	16S rRNA Gene-Based Oligonucleotide Microarray for Environmental Monitoring of the Betaproteobacterial Order " Rhodocyclales ― Applied and Environmental Microbiology, 2005, 71, 1373-1386.	1.4	231
23	New Insights into Metabolic Properties of Marine Bacteria Encoding Proteorhodopsins. PLoS Biology, 2005, 3, e273.	2.6	218
24	Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4720-4725.	3.3	210
25	Mucispirillum schaedleri Antagonizes Salmonella Virulence to Protect Mice against Colitis. Cell Host and Microbe, 2019, 25, 681-694.e8.	5.1	205
26	A Constant Flux of Diverse Thermophilic Bacteria into the Cold Arctic Seabed. Science, 2009, 325, 1541-1544.	6.0	189
27	Microarray and Functional Gene Analyses of Sulfate-Reducing Prokaryotes in Low-Sulfate, Acidic Fens Reveal Cooccurrence of Recognized Genera and Novel Lineages. Applied and Environmental Microbiology, 2004, 70, 6998-7009.	1.4	188
28	Environmental Enteric Dysfunction and Growth Failure/Stunting in Global Child Health. Pediatrics, 2016, 138, .	1.0	184
29	Longitudinal study of murine microbiota activity and interactions with the host during acute inflammation and recovery. ISME Journal, 2014, 8, 1101-1114.	4.4	174
30	Functionally relevant diversity of closely related <i>Nitrospira</i> in activated sludge. ISME Journal, 2015, 9, 643-655.	4.4	172
31	probeCheck – a central resource for evaluating oligonucleotide probe coverage and specificity. Environmental Microbiology, 2008, 10, 2894-2898.	1.8	170
32	Peatland <i>Acidobacteria</i> with a dissimilatory sulfur metabolism. ISME Journal, 2018, 12, 1729-1742.	4.4	168
33	Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. Current Opinion in Biotechnology, 2006, 17, 83-91.	3.3	166
34	Non-Sulfate-Reducing, Syntrophic Bacteria Affiliated with Desulfotomaculum Cluster I Are Widely Distributed in Methanogenic Environments. Applied and Environmental Microbiology, 2006, 72, 2080-2091.	1.4	165
35	A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes. Frontiers in Microbiology, 2015, 6, 731.	1.5	164
36	probeBase—an online resource for rRNA-targeted oligonucleotide probes and primers: new features 2016. Nucleic Acids Research, 2016, 44, D586-D589.	6.5	163

Alexander Loy

#	Article	IF	CITATIONS
37	Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfurâ€oxidizing prokaryotes. Environmental Microbiology, 2009, 11, 289-299.	1.8	162
38	Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms. ISME Journal, 2016, 10, 2365-2375.	4.4	159
39	Lateral Gene Transfer of Dissimilatory (Bi)Sulfite Reductase Revisited. Journal of Bacteriology, 2005, 187, 2203-2208.	1.0	153
40	Lifestyle and Horizontal Gene Transfer-Mediated Evolution of Mucispirillum schaedleri, a Core Member of the Murine Gut Microbiota. MSystems, 2017, 2, .	1.7	148
41	Barcoded Primers Used in Multiplex Amplicon Pyrosequencing Bias Amplification. Applied and Environmental Microbiology, 2012, 78, 612-612.	1.4	146
42	Endospores of thermophilic bacteria as tracers of microbial dispersal by ocean currents. ISME Journal, 2014, 8, 1153-1165.	4.4	139
43	Highly parallel microbial diagnostics using oligonucleotide microarrays. Clinica Chimica Acta, 2006, 363, 106-119.	0.5	123
44	Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiology Ecology, 2007, 60, 287-298.	1.3	117
45	Phylogenetic and genomic analysis of <i>Methanomassiliicoccales</i> in wetlands and animal intestinal tracts reveals clade-specific habitat preferences. FEMS Microbiology Ecology, 2016, 92, fiv149.	1.3	110
46	Ammoniaâ€oxidising archaea living at low pH: Insights from comparative genomics. Environmental Microbiology, 2017, 19, 4939-4952.	1.8	107
47	Intestinal Microbiota Signatures Associated with Inflammation History in Mice Experiencing Recurring Colitis. Frontiers in Microbiology, 2015, 6, 1408.	1.5	106
48	Improved 16S rRNA-targeted probe set for analysis of sulfate-reducing bacteria by fluorescence in situ hybridization. Journal of Microbiological Methods, 2007, 69, 523-528.	0.7	98
49	Diversity analysis of sulfite―and sulfateâ€reducing microorganisms by multiplex <i>dsrA</i> and <i>dsrB</i> amplicon sequencing using new primers and mock communityâ€optimized bioinformatics. Environmental Microbiology, 2016, 18, 2994-3009.	1.8	98
50	Unravelling Microbial Communities with DNA-Microarrays: Challenges and Future Directions. Microbial Ecology, 2007, 53, 498-506.	1.4	95
51	Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria. ISME Journal, 2012, 6, 2078-2090.	4.4	95
52	Functional Marker Genes for Identification of Sulfateâ€Reducing Prokaryotes. Methods in Enzymology, 2005, 397, 469-489.	0.4	86
53	Isotope array analysis of <i>Rhodocyclales</i> uncovers functional redundancy and versatility in an activated sludge. ISME Journal, 2009, 3, 1349-1364.	4.4	86
54	Colonization resistance and microbial ecophysiology: using gnotobiotic mouse models and single-cell technology to explore the intestinal jungle. FEMS Microbiology Reviews, 2013, 37, 793-829.	3.9	85

#	Article	IF	CITATIONS
55	Activity and community structures of sulfate-reducing microorganisms in polar, temperate and tropical marine sediments. ISME Journal, 2016, 10, 796-809.	4.4	85
56	Dispersal of thermophilic <i>Desulfotomaculum</i> endospores into Baltic Sea sediments over thousands of years. ISME Journal, 2013, 7, 72-84.	4.4	82
57	A fiber-deprived diet disturbs the fine-scale spatial architecture of the murine colon microbiome. Nature Communications, 2019, 10, 4366.	5.8	82
58	Diversity of Bacteria Growing in Natural Mineral Water after Bottling. Applied and Environmental Microbiology, 2005, 71, 3624-3632.	1.4	78
59	Single-Cell Genome and Group-Specific <i>dsrAB</i> Sequencing Implicate Marine Members of the Class <i>Dehalococcoidia</i> (Phylum <i>Chloroflexi</i>) in Sulfur Cycling. MBio, 2016, 7, .	1.8	78
60	<i>Paracatenula</i> , an ancient symbiosis between thiotrophic <i>Alphaproteobacteria</i> and catenulid flatworms. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12078-12083.	3.3	75
61	HuR Small-Molecule Inhibitor Elicits Differential Effects in Adenomatosis Polyposis and Colorectal Carcinogenesis. Cancer Research, 2017, 77, 2424-2438.	0.4	75
62	Complete Genome Sequences of Desulfosporosinus orientis DSM765 ^T , Desulfosporosinus youngiae DSM17734 ^T , Desulfosporosinus meridiei DSM13257 ^T , and Desulfosporosinus acidiphilus DSM22704 ^T . Journal of Bacteriology, 2012, 194, 6300-6301.	1.0	73
63	Intestinal Bacteria Modify Lymphoma Incidence and Latency by Affecting Systemic Inflammatory State, Oxidative Stress, and Leukocyte Genotoxicity. Cancer Research, 2013, 73, 4222-4232.	0.4	68
64	Thermophilic anaerobes in Arctic marine sediments induced to mineralize complex organic matter at high temperature. Environmental Microbiology, 2010, 12, 1089-1104.	1.8	61
65	Stable-Isotope Probing of Human and Animal Microbiome Function. Trends in Microbiology, 2018, 26, 999-1007.	3.5	57
66	Multiple bacterial symbionts in two species of coâ€occurring gutless oligochaete worms from Mediterranean sea grass sediments. Environmental Microbiology, 2008, 10, 3404-3416.	1.8	55
67	Novel taxa of Acidobacteriota implicated in seafloor sulfur cycling. ISME Journal, 2021, 15, 3159-3180.	4.4	54
68	Depth Distribution and Assembly of Sulfate-Reducing Microbial Communities in Marine Sediments of Aarhus Bay. Applied and Environmental Microbiology, 2017, 83, .	1.4	53
69	Bacterial interactions during sequential degradation of cyanobacterial necromass in a sulfidic arctic marine sediment. Environmental Microbiology, 2018, 20, 2927-2940.	1.8	50
70	Microorganisms with Novel Dissimilatory (Bi)Sulfite Reductase Genes Are Widespread and Part of the Core Microbiota in Low-Sulfate Peatlands. Applied and Environmental Microbiology, 2011, 77, 1231-1242.	1.4	49
71	An Economical and Flexible Dual Barcoding, Two-Step PCR Approach for Highly Multiplexed Amplicon Sequencing. Frontiers in Microbiology, 2021, 12, 669776.	1.5	48
72	Oligonucleotide microarray for identification ofEnterococcusspecies. FEMS Microbiology Letters, 2005, 246, 133-142.	0.7	47

#	Article	IF	CITATIONS
73	Intestinal Epithelial Cell Tyrosine Kinase 2 Transduces IL-22 Signals To Protect from Acute Colitis. Journal of Immunology, 2015, 195, 5011-5024.	0.4	40
74	Type I interferons have opposing effects during the emergence and recovery phases of colitis. European Journal of Immunology, 2014, 44, 2749-2760.	1.6	39
75	Anaerobic bacterial degradation of protein and lipid macromolecules in subarctic marine sediment. ISME Journal, 2021, 15, 833-847.	4.4	38
76	Biogeography of sulfate-reducing prokaryotes in river floodplains. FEMS Microbiology Ecology, 2008, 64, 395-406.	1.3	36
77	High genetic similarity between two geographically distinct strains of the sulfur-oxidizing symbiont Ā¢Â€A~Candidatus Thiobios zoothamnicoliĀ¢Â€A™. FEMS Microbiology Ecology, 2009, 67, 229-241.	1.3	35
78	Long-Term Transcriptional Activity at Zero Growth of a Cosmopolitan Rare Biosphere Member. MBio, 2019, 10, .	1.8	35
79	Environmental and Intestinal Phylum Firmicutes Bacteria Metabolize the Plant Sugar Sulfoquinovose via a 6-Deoxy-6-sulfofructose Transaldolase Pathway. IScience, 2020, 23, 101510.	1.9	32
80	Sulfoquinovose is a select nutrient of prominent bacteria and a source of hydrogen sulfide in the human gut. ISME Journal, 2021, 15, 2779-2791.	4.4	30
81	Gypsum amendment to rice paddy soil stimulated bacteria involved in sulfur cycling but largely preserved the phylogenetic composition of the total bacterial community. Environmental Microbiology Reports, 2016, 8, 413-423.	1.0	29
82	Genomic insights into diverse bacterial taxa that degrade extracellular DNA in marine sediments. Nature Microbiology, 2021, 6, 885-898.	5.9	29
83	Bottled aqua incognita: microbiota assembly and dissolved organic matter diversity in natural mineral waters. Microbiome, 2017, 5, 126.	4.9	26
84	Bacterial nutrient foraging in a mouse model of enteral nutrient deprivation: insight into the gut origin of sepsis. American Journal of Physiology - Renal Physiology, 2016, 311, G734-G743.	1.6	25
85	Evolution and Ecology of Microbes Dissimilating Sulfur Compounds: Insights from Siroheme Sulfite Reductases. , 2008, , 46-59.		24
86	Hair eruption initiates and commensal skin microbiota aggravate adverse events of anti-EGFR therapy. Science Translational Medicine, 2019, 11, .	5.8	23
87	16S rRNA geneâ€based phylogenetic microarray for simultaneous identification of members of the genus <i>Burkholderia</i> . Environmental Microbiology, 2009, 11, 779-800.	1.8	22
88	Historical Factors Associated With Past Environments Influence the Biogeography of Thermophilic Endospores in Arctic Marine Sediments. Frontiers in Microbiology, 2019, 10, 245.	1.5	21
89	Systematic Spatial Bias in DNA Microarray Hybridization Is Caused by Probe Spot Position-Dependent Variability in Lateral Diffusion. PLoS ONE, 2011, 6, e23727.	1.1	18
90	Glacial Runoff Promotes Deep Burial of Sulfur Cycling-Associated Microorganisms in Marine Sediments. Frontiers in Microbiology, 2019, 10, 2558.	1.5	16

#	Article	IF	CITATIONS
91	Modeling Formamide Denaturation of Probe-Target Hybrids for Improved Microarray Probe Design in Microbial Diagnostics. PLoS ONE, 2012, 7, e43862.	1.1	16
92	Draft Genome Sequence of <i>Telmatospirillum siberiense</i> 26-4b1, an Acidotolerant Peatland Alphaproteobacterium Potentially Involved in Sulfur Cycling. Genome Announcements, 2018, 6, .	0.8	13
93	Molecular strategies for studies of natural populations of sulphate-reducing microorganisms. , 2007, , 39-116.		12
94	Stable Isotope Techniques for the Assessment of Host and Microbiota Response During Gastrointestinal Dysfunction. Journal of Pediatric Gastroenterology and Nutrition, 2017, 64, 8-14.	0.9	11
95	Draft Genome Sequence of <i>Desulfosporosinus</i> sp. Strain Sb-LF, Isolated from an Acidic Peatland in Germany. Microbiology Resource Announcements, 2019, 8, .	0.3	8
96	Woeseiales transcriptional response to shallow burial in Arctic fjord surface sediment. PLoS ONE, 2020, 15, e0234839.	1.1	8
97	Diversity decoupled from sulfur isotope fractionation in a sulfateâ€reducing microbial community. Geobiology, 2019, 17, 660-675.	1.1	7
98	Phylogenetic Microarrays for Cultivation-Independent Identification and Metabolic Characterization of Microorganisms in Complex Samples. Methods in Molecular Biology, 2011, 688, 187-206.	0.4	5
99	Probing Identity and Physiology of Uncultured Microorganisms with Isotope Labeling Techniques. , 2010, , 127-145.		4
100	Draft Genome Sequence of Desulfosporosinus fructosivorans Strain 63.6F T , Isolated from Marine Sediment in the Baltic Sea. Microbiology Resource Announcements, 2019, 8, .	0.3	1
101	Woeseiales transcriptional response to shallow burial in Arctic fjord surface sediment. , 2020, 15, e0234839.		0
102	Woeseiales transcriptional response to shallow burial in Arctic fjord surface sediment. , 2020, 15, e0234839.		0
103	Woeseiales transcriptional response to shallow burial in Arctic fjord surface sediment. , 2020, 15, e0234839.		0
104	Woeseiales transcriptional response to shallow burial in Arctic fjord surface sediment. , 2020, 15, e0234839.		0