
Michael C Stambaugh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1879602/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Age, growth, longevity, and post-fire/thinning response of chinkapin oak seedlings in a Kansas upland hardwood forest1. Journal of the Torrey Botanical Society, 2022, 149, .	0.3	1
2	Working toward a fire-scar network for the Cumberland Plateau—Fire history results from Bridgestone Nature Reserve at Chestnut Mountain, Tennessee1. Journal of the Torrey Botanical Society, 2022, 149, .	0.3	1
3	Pre-Columbian red pine (Pinus resinosa Ait.) fire regimes of north-central Pennsylvania, USA. Fire Ecology, 2022, 18, .	3.0	5
4	The North American treeâ€ring fireâ€scar network. Ecosphere, 2022, 13, .	2.2	26
5	Red pine (Pinus resinosa Ait.) fire history and management implications in the Mississippi River headwaters, Minnesota, USA. Forest Ecology and Management, 2021, 494, 119313.	3.2	4
6	Robust projections of future fire probability for the conterminous United States. Science of the Total Environment, 2021, 789, 147872.	8.0	29
7	History and Future of Fire in Hardwood and Conifer Forests of the Great Lakes-Northeastern Forest Region, USA. Managing Forest Ecosystems, 2021, , 243-285.	0.9	2
8	Fire and Forests in the 21st Century: Managing Resilience Under Changing Climates and Fire Regimes in USA Forests. Managing Forest Ecosystems, 2021, , 465-502.	0.9	8
9	Fire Ecology and Management of Forest Ecosystems in the Western Central Hardwoods and Prairie-Forest Border. Managing Forest Ecosystems, 2021, , 149-199.	0.9	0
10	Linkages between forest growth, climate, and agricultural production are revealed through analysis of seasonally-partitioned longleaf pine (Pinus palustris Mill.) tree rings. Dendrochronologia, 2021, 65, 125801.	2.2	11
11	Reconsidering the fire ecology of the iconic American chestnut. Ecosphere, 2020, 11, e03267.	2.2	8
12	Thresholds in woody and herbaceous component coâ€existence inform the restoration of a fireâ€dependent community. Applied Vegetation Science, 2020, 23, 159-174.	1.9	0
13	Litter to glitter: promoting herbaceous groundcover and diversity in mid-southern USA oak forests using canopy disturbance and fire. Fire Ecology, 2020, 16, .	3.0	14
14	Revealing historical fire regimes of the Cumberland Plateau, USA, through remnant fire-scarred shortleaf pines (Pinus echinata Mill.). Fire Ecology, 2020, 16, .	3.0	8
15	Multi-scale synthesis of historical fire regimes along the south-central US prairie–forest border. Fire Ecology, 2019, 15, .	3.0	4
16	Fire Scars Negatively Affect Hydraulic Conductivity in White Oak (Quercus alba). Forests, 2019, 10, 812.	2.1	0
17	Prescribed fire effects on oak woodland advance regeneration at the prairie–forest border in Kansas, USA. Canadian Journal of Forest Research, 2019, 49, 1570-1579.	1.7	4
18	Successful hard pine regeneration and survival through repeated burning: An applied historical ecology approach. Forest Ecology and Management, 2019, 437, 246-252.	3.2	9

MICHAEL C STAMBAUGH

#	Article	IF	CITATIONS
19	Spatial variability of historical fires across a red pine–oak landscape, Pennsylvania,USA. Ecosphere, 2019, 10, e02978.	2.2	13
20	Fuel dynamics during oak woodland and savanna restoration in the Mid-South USA. International Journal of Wildland Fire, 2019, 28, 70.	2.4	8
21	Historical fire in the Appalachian Plateau of Ohio and Kentucky, USA, from remnant yellow pines. Fire Ecology, 2019, 15, .	3.0	11
22	Future southcentral US wildfire probability due to climate change. Climatic Change, 2018, 147, 617-631.	3.6	18
23	Regeneration and invasion of cottonwood riparian forest following wildfire. Restoration Ecology, 2018, 26, 456-465.	2.9	6
24	Fire and Climate Suitability for Woody Vegetation Communities in the South Central United States. Fire Ecology, 2018, 14, 106-124.	3.0	10
25	Wave of fire: an anthropogenic signal in historical fire regimes across central Pennsylvania, <scp>USA</scp> . Ecosphere, 2018, 9, e02222.	2.2	53
26	Advancing Dendrochronological Studies of Fire in the United States. Fire, 2018, 1, 11.	2.8	22
27	Fire scar growth and closure rates in white oak (Quercus alba) and the implications for prescribed burning. Forest Ecology and Management, 2017, 391, 396-403.	3.2	18
28	Evidence that higher [CO2] increases tree growth sensitivity to temperature: a comparison of modern and paleo oaks. Oecologia, 2017, 183, 1183-1195.	2.0	6
29	Three centuries of fire and forest vegetation transitions preceding Texas' most destructive wildfire: Lost Pines or lost oaks?. Forest Ecology and Management, 2017, 396, 91-101.	3.2	14
30	The theory, direction, and magnitude of ecosystem fire probability as constrained by precipitation and temperature. PLoS ONE, 2017, 12, e0180956.	2.5	4
31	Quantifying and modelling urban stream temperature: a central US watershed study. Hydrological Processes, 2016, 30, 503-514.	2.6	20
32	Fire Effects on Wildlife in the Central Hardwoods and Appalachian Regions, USA. Fire Ecology, 2016, 12, 127-159.	3.0	63
33	350 Years of Fire-Climate-Human Interactions in a Great Lakes Sandy Outwash Plain. Forests, 2016, 7, 189.	2.1	23
34	Fire Regimes of Remnant Pitch Pine Communities in the Ridge and Valley Region of Central Pennsylvania, USA. Forests, 2016, 7, 224.	2.1	19
35	Scale Dependence of Oak woodland Historical Fire Intervals: Contrasting the barrens of Tennessee and Cross timbers of Oklahoma, USA. Fire Ecology, 2016, 12, 65-84.	3.0	18
36	Droughts and Wildfires in Western U.S. Rangelands. Rangelands, 2016, 38, 197-203.	1.9	28

MICHAEL C STAMBAUGH

#	Article	IF	CITATIONS
37	A dynamic leaf gasâ€exchange strategy is conserved in woody plants under changing ambient CO ₂ : evidence from carbon isotope discrimination in paleo and CO ₂ enrichment studies. Global Change Biology, 2016, 22, 889-902.	9.5	106
38	Fire History Reflects Human History in the Pine Creek Gorge of North-Central Pennsylvania. Natural Areas Journal, 2015, 35, 214-223.	0.5	10
39	Clarifying the role of fire in the deciduous forests of eastern North America: reply to Matlack. Conservation Biology, 2015, 29, 942-946.	4.7	51
40	An Analytic Approach to Climate Dynamics and Fire Frequency in the Great Plains. Great Plains Research, 2015, 25, 139-150.	0.2	8
41	Performance of Burn-Severity Metrics and Classification in Oak Woodlands and Grasslands. Remote Sensing, 2015, 7, 10501-10522.	4.0	33
42	Deglacial Hydroclimate of Midcontinental North America. Quaternary Research, 2015, 83, 336-344.	1.7	26
43	Historical Pyrogeography of Texas, USA. Fire Ecology, 2014, 10, 72-89.	3.0	11
44	Linking fire history to successional changes of xeric oak woodlands. Forest Ecology and Management, 2014, 320, 83-95.	3.2	23
45	Fire damage effects on red oak timber product value. Forest Ecology and Management, 2014, 320, 182-189.	3.2	28
46	Future Fire Probability Modeling with Climate Change Data and Physical Chemistry. Forest Science, 2014, 60, 862-870.	1.0	25
47	The influences of drought and humans on the fire regimes of northern Pennsylvania, USA. Canadian Journal of Forest Research, 2013, 43, 757-767.	1.7	25
48	Fire History in the Cherokee Nation of Oklahoma. Human Ecology, 2013, 41, 749-758.	1.4	33
49	Spring temperature responses of oaks are synchronous with North Atlantic conditions during the last deglaciation. Ecological Monographs, 2012, 82, 169-187.	5.4	21
50	Predicting Fire Frequency with Chemistry and Climate. Ecosystems, 2012, 15, 322-335.	3.4	151
51	Fire History of a Relict Oak Woodland in Northeast Texas. Rangeland Ecology and Management, 2011, 64, 419-423.	2.3	17
52	Drought duration and frequency in the U.S. Corn Belt during the last millennium (AD 992–2004). Agricultural and Forest Meteorology, 2011, 151, 154-162.	4.8	50
53	Longleaf pine (Pinus palustris Mill.) fire scars reveal new details of a frequent fire regime. Journal of Vegetation Science, 2011, 22, 1094-1104.	2.2	129
54	Spatial patterning of fuels and fire hazard across a central U.S. deciduous forest region. Landscape Ecology, 2011, 26, 923-935.	4.2	10

MICHAEL C STAMBAUGH

#	Article	IF	CITATIONS
55	Fire, Drought, and Human History near the Western Terminus of the Cross Timbers, Wichita Mountains, Oklahoma, USA. Fire Ecology, 2009, 5, 51-65.	3.0	31
56	Progress in Constructing a Long Oak Chronology from the Central United States. Tree-Ring Research, 2009, 65, 147-156.	0.6	13
57	The Temporal Distribution and Carbon Storage of Large Oak Wood in Streams and Floodplain Deposits. Ecosystems, 2008, 11, 643-653.	3.4	37
58	Predicting spatio-temporal variability in fire return intervals using a topographic roughness index. Forest Ecology and Management, 2008, 254, 463-473.	3.2	80
59	Fire scars reveal source of New England's 1780 Dark Day. International Journal of Wildland Fire, 2007, 16, 266.	2.4	13
60	HISTORICAL CO2GROWTH ENHANCEMENT DECLINES WITH AGE INQUERCUSANDPINUS. Ecological Monographs, 2006, 76, 549-564.	5.4	54
61	Post-oak fire scars as a function of diameter, growth, and tree age. Forest Ecology and Management, 2004, 198, 183-192.	3.2	46
62	Ancient oak climate proxies from the agricultural heartland. Eos, 2004, 85, 483.	0.1	1
63	Fire and Human History of a Barren-Forest Mosaic in Southern Indiana. American Midland Naturalist, 2003, 149, 21-34.	0.4	37