Predrag JaniÄić

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1879469/publications.pdf Version: 2024-02-01

Ρρεπράς Ιανιάιάτ

#	Article	IF	CITATIONS
1	Theorem Proving as Constraint Solving with Coherent Logic. Journal of Automated Reasoning, 2022, 66, 689-746.	1.4	2
2	New dynamics in dynamic geometry: Dragging constructed points. Journal of Symbolic Computation, 2020, 97, 3-15.	0.8	6
3	Portfolio theorem proving and prover runtime prediction for geometry. Annals of Mathematics and Artificial Intelligence, 2019, 85, 119-146.	1.3	7
4	Constructibility Classes for Triangle Location Problems. Mathematics in Computer Science, 2016, 10, 27-39.	0.4	3
5	Automated generation of machine verifiable and readable proofs: A case study of Tarski's geometry. Annals of Mathematics and Artificial Intelligence, 2015, 74, 249-269.	1.3	9
6	Automated Theorem Proving in GeoGebra: Current Achievements. Journal of Automated Reasoning, 2015, 55, 39-59.	1.4	78
7	Computer Theorem Proving for Verifiable Solving of Geometric Construction Problems. Lecture Notes in Computer Science, 2015, , 72-93.	1.3	3
8	A Vernacular for Coherent Logic. Lecture Notes in Computer Science, 2014, , 388-403.	1.3	8
9	Simple algorithm portfolio for SAT. Artificial Intelligence Review, 2013, 40, 457-465.	15.7	15
10	Proving Correctness of a KRK Chess Endgame Strategy by SAT-based Constraint Solving. ICGA Journal, 2013, 36, 81-99.	0.3	1
11	The Area Method. Journal of Automated Reasoning, 2012, 48, 489-532.	1.4	43
12	Towards Understanding Triangle Construction Problems. Lecture Notes in Computer Science, 2012, , 127-142.	1.3	8
13	CDCL-Based Abstract State Transition System for Coherent Logic. Lecture Notes in Computer Science, 2012, , 264-279.	1.3	Ο
14	A Coherent Logic Based Geometry Theorem Prover Capable of Producing Formal and Readable Proofs. Lecture Notes in Computer Science, 2011, , 201-220.	1.3	18
15	Geometry Constructions Language. Journal of Automated Reasoning, 2010, 44, 3-24.	1.4	28
16	URBiVA: Uniform Reduction to Bit-Vector Arithmetic. Lecture Notes in Computer Science, 2010, , 346-352.	1.3	8
17	Formal Correctness Proof for DPLL Procedure. Informatica, 2010, 21, 57-78.	2.7	8
18	Instance-Based Selection of Policies for SAT Solvers. Lecture Notes in Computer Science, 2009, , 326-340.	1.3	24

Predrag JaniÄ

#	Article	IF	CITATIONS
19	GeoThms — a Web System for Euclidean Constructive Geometry. Electronic Notes in Theoretical Computer Science, 2007, 174, 35-48.	0.9	16
20	A Variant of N-Gram Based Language Classification. Lecture Notes in Computer Science, 2007, , 410-421.	1.3	2
21	Automatic Synthesis of Decision Procedures: A Case Study of Ground and Linear Arithmetic. Lecture Notes in Computer Science, 2007, , 80-93.	1.3	Ο
22	n-Gram-based classification and unsupervised hierarchical clustering of genome sequences. Computer Methods and Programs in Biomedicine, 2006, 81, 137-153.	4.7	74
23	Simple characterization of functionally complete one-element sets of propositional connectives. Mathematical Logic Quarterly, 2006, 52, 498-504.	0.2	Ο
24	GCLC — A Tool for Constructive Euclidean Geometry and More Than That. Lecture Notes in Computer Science, 2006, , 58-73.	1.3	32
25	System Description: GCLCprover + GeoThms. Lecture Notes in Computer Science, 2006, , 145-150.	1.3	19
26	Automatic Verification of Regular Constructions in Dynamic Geometry Systems. , 2006, , 39-51.		12
27	Learning Strategies for Mechanised Building of Decision Procedures. Electronic Notes in Theoretical Computer Science, 2003, 86, 174-189.	0.9	Ο
28	WinGCLC., 2003,,.		4
29	A General Setting for Flexibly Combining and Augmenting Decision Procedures. Journal of Automated Reasoning, 2002, 28, 257-305.	1.4	8
30	GD-SAT model and crossover line. Journal of Experimental and Theoretical Artificial Intelligence, 2001, 13, 181-198.	2.8	0
31	A Framework for the Flexible Integration of a Class of Decision Procedures into Theorem Provers. Lecture Notes in Computer Science, 1999, , 127-141.	1.3	2
32	Formalization of Abstract State Transition Systems for SAT. Logical Methods in Computer Science, 0, Volume 7, Issue 3, .	0.4	8
33	URSA: A System for Uniform Reduction to SAT. Logical Methods in Computer Science, 0, Volume 8, Issue 3, .	0.4	8
34	Formalization and Implementation of Algebraic Methods in Geometry. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 79, 63-81.	0.8	10
35	Automated Generation of Illustrations for Synthetic Geometry Proofs. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 352, 91-102.	0.8	2