
Corentin Cras-Méneur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1879194/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Beta-cell specific Insr deletion promotes insulin hypersecretion and improves glucose tolerance prior to global insulin resistance. Nature Communications, 2022, 13, 735.	12.8	20
2	mTORC1 regulates high levels of protein synthesis in retinal ganglion cells of adult mice. Journal of Biological Chemistry, 2022, 298, 101944.	3.4	2
3	Improved in vivo imaging method for individual islets across the mouse pancreas reveals a heterogeneous insulin secretion response to glucose. Scientific Reports, 2021, 11, 603.	3.3	6
4	Ventromedial hypothalamic nucleus neuronal subset regulates blood glucose independently of insulin. Journal of Clinical Investigation, 2020, 130, 2943-2952.	8.2	40
5	Role of nutrients and mTOR signaling in the regulation of pancreatic progenitors development. Molecular Metabolism, 2017, 6, 560-573.	6.5	40
6	Early pancreatic islet fate and maturation is controlled through RBP-Jκ. Scientific Reports, 2016, 6, 26874.	3.3	9
7	Hyperglucagonemia in an animal model of insulin- deficient diabetes: what therapy can improve it?. Clinical Diabetes and Endocrinology, 2016, 2, 11.	2.7	9
8	Noninvasivein vivoimaging of embryonic β-cell development in the anterior chamber of the eye. Islets, 2016, 8, 35-47.	1.8	4
9	Natural history of Î ² -cell adaptation and failure in type 2 diabetes. Molecular Aspects of Medicine, 2015, 42, 19-41.	6.4	183
10	Exposure of mouse embryonic pancreas to metformin enhances the number of pancreatic progenitors. Diabetologia, 2014, 57, 2566-2575.	6.3	20
11	Importance of β-Catenin in glucose and energy homeostasis. Scientific Reports, 2012, 2, 693.	3.3	46
12	mTORC1 signaling and regulation of pancreatic \hat{I}^2 -cell mass. Cell Cycle, 2012, 11, 1892-1902.	2.6	74
13	Glucose and Fatty Acids Synergize to Promote B-Cell Apoptosis through Activation of Glycogen Synthase Kinase 31² Independent of JNK Activation. PLoS ONE, 2011, 6, e18146.	2.5	41
14	Conditional ablation of Gsk-3β in islet beta cells results in expanded mass and resistance to fat feeding-induced diabetes in mice. Diabetologia, 2010, 53, 2600-2610.	6.3	91
15	Decreased IRS Signaling Impairs β-Cell Cycle Progression and Survival in Transgenic Mice Overexpressing S6K in I²-Cells. Diabetes, 2010, 59, 2390-2399.	0.6	58
16	Transgenic Overexpression of Active Calcineurin in β-Cells Results in Decreased β-Cell Mass and Hyperglycemia. PLoS ONE, 2010, 5, e11969.	2.5	33
17	Presenilins, Notch dose control the fate of pancreatic endocrine progenitors during a narrow developmental window. Genes and Development, 2009, 23, 2088-2101.	5.9	52
18	Inhibition of Foxo1 Protects Pancreatic Islet β-Cells Against Fatty Acid and Endoplasmic Reticulum Stress–Induced Apoptosis, Diabetes, 2008, 57, 846-859.	0.6	204

Corentin Cras-Méneur

#	Article	IF	CITATIONS
19	Genetic Deficiency of Glycogen Synthase Kinase-3β Corrects Diabetes in Mouse Models of Insulin Resistance. PLoS Biology, 2008, 6, e37.	5.6	96
20	A global approach to identify differentially expressed genes in cDNA (two-color) microarray experiments. Bioinformatics, 2007, 23, 2073-2079.	4.1	22
21	Regulation of βâ€cell mass and function by the Akt/protein kinase B signalling pathway. Diabetes, Obesity and Metabolism, 2007, 9, 147-157.	4.4	76
22	Akt Induces Â-Cell Proliferation by Regulating Cyclin D1, Cyclin D2, and p21 Levels and Cyclin-Dependent Kinase-4 Activity. Diabetes, 2006, 55, 318-325.	0.6	186
23	Glucose Regulates Foxo1 Through Insulin Receptor Signaling in the Pancreatic Islet Â-cell. Diabetes, 2006, 55, 1581-1591.	0.6	112
24	Reduced Expression of the Insulin Receptor in Mouse Insulinoma (MIN6) Cells Reveals Multiple Roles of Insulin Signaling in Gene Expression, Proliferation, Insulin Content, and Secretion. Journal of Biological Chemistry, 2005, 280, 4992-5003.	3.4	86
25	Increased dosage of mammalian Sir2 in pancreatic \hat{l}^2 cells enhances glucose-stimulated insulin secretion in mice. Cell Metabolism, 2005, 2, 105-117.	16.2	575
26	Glucose and Insulin Treatment of Insulinoma Cells Results in Transcriptional Regulation of a Common Set of Genes. Diabetes, 2004, 53, 1496-1508.	0.6	48
27	An expression profile of human pancreatic islet mRNAs by Serial Analysis of Gene Expression (SAGE). Diabetologia, 2004, 47, 284-299.	6.3	41
28	Gene expression profiling in islet biology and diabetes research. Diabetes/Metabolism Research and Reviews, 2003, 19, 32-42.	4.0	23
29	Transcriptional Program of the Endocrine Pancreas in Mice and Humans. Diabetes, 2003, 52, 1604-1610.	0.6	52
30	Role for FGFR2111b-mediated signals in controlling pancreatic endocrine progenitor cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3884-3889.	7.1	113
31	FGFR1-IIIb is a putative marker of pancreatic progenitor cells. Mechanisms of Development, 2002, 116, 205-208.	1.7	13
32	No Evidence for Linkage or for Diabetes-Associated Mutations in the Activin Type 2B Receptor Gene (ACVR2B) in French Patients With Mature-Onset Diabetes of the Young or Type 2 Diabetes. Diabetes, 2001, 50, 1219-1221.	0.6	6
33	Epidermal Growth Factor Increases Undifferentiated Pancreatic Embryonic Cells In Vitro: A Balance Between Proliferation and Differentiation. Diabetes, 2001, 50, 1571-1579.	0.6	133
34	Pancreatic pattern of expression of thyrotropin-releasing hormone during rat embryonic development. Journal of Endocrinology, 2000, 166, 481-488.	2.6	17