
Wensheng Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1878952/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A simple electrochemiluminesecence aptasenor using a GCE/NCQDs/aptamers for detection of Pb. Environmental Technology (United Kingdom), 2022, 43, 2270-2277.	2.2	7
2	A Selfâ€Assembled Fmocâ€Diphenylalanine Hydrogelâ€Encapsulated Pt Nanozyme as Oxidase―and Peroxidaseâ€Like Breaking pH Limitation for Potential Antimicrobial Application. Chemistry - A European Journal, 2022, 28, .	3.3	11
3	Nickel Nanoflowers with Controllable Cation Vacancy for Enhanced Electrochemical Nitrogen Reduction. ACS Applied Materials & Interfaces, 2022, 14, 28033-28043.	8.0	14
4	Effects of Oxygen Pressurization on Li ⁺ /Ni ²⁺ Cation Mixing and the Oxygen Vacancies of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Cathode Materials. ACS Applied Materials & Interfaces, 2022, 14, 31851-31861.	8.0	17
5	Ultrasensitive electrochemiluminescence biosensor for the detection of tumor exosomes based on peptide recognition and luminol-AuNPs@g-C3N4 nanoprobe signal amplification. Talanta, 2021, 221, 121379.	5.5	42
6	Simple Strategy for Synthesizing LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Using CoAl-LDH Nanosheet-Coated Ni(OH) ₂ as the Precursor: Dual Effects of the Buffer Layer and Synergistic Diffusion. ACS Applied Materials & Interfaces, 2021, 13, 29714-29725.	8.0	7
7	Simultaneous detection of multiple neuroendocrine tumor markers in patient serum with an ultrasensitive and antifouling electrochemical immunosensor. Biosensors and Bioelectronics, 2021, 194, 113603.	10.1	19
8	Vacancy in Ultrathin 2D Nanomaterials toward Sustainable Energy Application. Advanced Energy Materials, 2020, 10, 1902107.	19.5	76
9	Black phosphorus quantum dots as novel electrogenerated chemiluminescence emitters for the detection of Cu ²⁺ . Chemical Communications, 2020, 56, 4680-4683.	4.1	34
10	Confinement Catalyst of Co ₉ S ₈ @N-Doped Carbon Derived from Intercalated Co(OH) ₂ Precursor and Enhanced Electrocatalytic Oxygen Reduction Performance. ACS Applied Materials & Interfaces, 2020, 12, 33740-33750.	8.0	34
11	Synthesis from a layered double hydroxide precursor for a highly efficient oxygen evolution reaction. Inorganic Chemistry Frontiers, 2019, 6, 1793-1798.	6.0	21
12	Self-Assembling Peptide Artificial Enzyme as an Efficient Detection Prober and Inhibitor for Cancer Cells. ACS Applied Bio Materials, 2019, 2, 2185-2191.	4.6	13
13	Comparison of electrochemical performance of LiNi _{1â°x} Co _x O ₂ cathode materials synthesized from coated (1â°' <i>x</i>)Ni(OH) ₂ @ <i>x</i> Co(OH) ₂ and doped Ni _{1â°'x} Co _x (OH) ₂ precursors. RSC Advances. 2019. 9. 9079-9085.	3.6	4
14	High-discharge-voltage lithium-rich layered-oxide cathode materials based on low oxygen vacancy. Dalton Transactions, 2019, 48, 3209-3213.	3.3	5
15	Density functional theory calculations for evaluation of phosphorene as a potential anode material for magnesium batteries. RSC Advances, 2018, 8, 7196-7204.	3.6	77
16	Rigid TiO _{2â^'x} coated mesoporous hollow Si nanospheres with high structure stability for lithium-ion battery anodes. RSC Advances, 2018, 8, 15094-15101.	3.6	10
17	Effect of precursor structures on the electrochemical performance of Ni-rich LiNi0.88Co0.12O2 cathode materials. Electrochimica Acta, 2018, 270, 319-329.	5.2	29
18	Ultrathin layered double hydroxide nanosheets with Ni(III) active species obtained by exfoliation for highly efficient ethanol electrooxidation. Electrochimica Acta, 2018, 260, 898-904.	5.2	60

Wensheng Yang

#	Article	IF	CITATIONS
19	One-time sintering process to synthesize ZrO ₂ -coated LiMn ₂ O ₄ materials for lithium-ion batteries. RSC Advances, 2018, 8, 16753-16761.	3.6	19
20	Synthesis of high-energy-density LiMn2O4 cathode through surficial Nb doping for lithium-ion batteries. Journal of Solid State Electrochemistry, 2018, 22, 3099-3109.	2.5	7
21	Intercalated Co(OH) ₂ -derived flower-like hybrids composed of cobalt sulfide nanoparticles partially embedded in nitrogen-doped carbon nanosheets with superior lithium storage. Journal of Materials Chemistry A, 2017, 5, 3628-3637.	10.3	36
22	Encapsulation of enzyme into mesoporous cages of metal–organic frameworks for the development of highly stable electrochemical biosensors. Analytical Methods, 2017, 9, 3213-3220.	2.7	41
23	A Co-N/C hollow-sphere electrocatalyst derived from a metanilic CoAl layered double hydroxide for the oxygen reduction reaction, and its active sites in various pH media. Nano Research, 2017, 10, 2508-2518.	10.4	62
24	Understanding the Selective Detection of Fe ³⁺ Based on Graphene Quantum Dots as Fluorescent Probes: The <i>K</i> _{sp} of a Metal Hydroxide-Assisted Mechanism. Analytical Chemistry, 2017, 89, 12054-12058.	6.5	143
25	Amperometric sensing of hydrogen peroxide via an ITO electrode modified with gold nanoparticles electrodeposited on a CoMn-layered double hydroxide. Mikrochimica Acta, 2017, 184, 3989-3996.	5.0	27
26	Highly dispersed palladium nanoparticles generated <i>in situ</i> on layered double hydroxide nanowalls for ultrasensitive electrochemical detection of hydrazine. Analytical Methods, 2017, 9, 6629-6635.	2.7	12
27	Seamless Signal Transduction from Three-Dimensional Cultured Cells to a Superoxide Anions Biosensor via In Situ Self-Assembly of Dipeptide Hydrogel. Analytical Chemistry, 2017, 89, 12843-12849.	6.5	42
28	Self-Assembled Peptide Hydrogel as a Smart Biointerface for Enzyme-Based Electrochemical Biosensing and Cell Monitoring. ACS Applied Materials & amp; Interfaces, 2016, 8, 25036-25042.	8.0	110
29	Monodisperse cobalt sulfides embedded within nitrogen-doped carbon nanoflakes: an efficient and stable electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 11342-11350.	10.3	85
30	Chemical power source based on layered double hydroxides. Journal of Solid State Electrochemistry, 2015, 19, 1933-1948.	2.5	28
31	Self-assembled dipeptide–gold nanoparticle hybrid spheres for highly sensitive amperometric hydrogen peroxide biosensors. Biosensors and Bioelectronics, 2015, 66, 392-398.	10.1	60
32	Electrogenerated chemiluminescence behavior of peptide nanovesicle and its application in sensing dopamine. Biosensors and Bioelectronics, 2015, 63, 478-482.	10.1	39
33	Synthesis and high-rate performance of spinel Li4Ti5O12 with core–shell hierarchical macro–mesoporous structure. New Journal of Chemistry, 2014, 38, 1173.	2.8	12
34	Synthesis and electrocatalytic performance of MnO ₂ -promoted Ag@Pt/MWCNT electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 5371-5378.	10.3	36
35	Facile fabrication of Chinese lantern-like MnO@N–C: a high-performance anode material for lithium-ion batteries. RSC Advances, 2014, 4, 23027-23035.	3.6	31
36	Formation of Stable Phosphorus–Carbon Bond for Enhanced Performance in Black Phosphorus Nanoparticle–Graphite Composite Battery Anodes. Nano Letters, 2014, 14, 4573-4580.	9.1	764

Wensheng Yang

#	Article	IF	CITATIONS
37	Facile fabrication of yolk–shell structured porous Si–C microspheres as effective anode materials for Li-ion batteries. RSC Advances, 2014, 4, 71-75.	3.6	85
38	Carbon Nanorings and Their Enhanced Lithium Storage Properties. Advanced Materials, 2013, 25, 1125-1130.	21.0	121
39	Carbon Nanorings and Their Enhanced Lithium Storage Properties (Adv. Mater. 8/2013). Advanced Materials, 2013, 25, 1124-1124.	21.0	4
40	An integrated core–shell structured Li3V2(PO4)3@C cathode material of LIBs prepared by a momentary freeze-drying method. Journal of Materials Chemistry, 2012, 22, 5281.	6.7	67
41	Facile synthesis of nanostructured LiFePO4/C cathode material for lithium-ion batteries. Science Bulletin, 2012, 57, 4160-4163.	1.7	3
42	Synthesis of graphene nanosheets with good control over the number of layers within the two-dimensional galleries of layered double hydroxides. Chemical Communications, 2012, 48, 8126.	4.1	59
43	Surface modification of LiCo1/3Ni1/3Mn1/3O2 with CoAl-MMO for lithium-ion batteries. Journal of Materials Science, 2012, 47, 4205-4209.	3.7	7
44	Ultralong single crystalline V2O5 nanowire/graphene composite fabricated by a facile green approach and its lithium storage behavior. Energy and Environmental Science, 2011, 4, 4000.	30.8	252
45	Highly Sensitive and Selective Determination of Dopamine Based on Graphite Nanosheet-Nafion Composite Film Modified Electrode. Electroanalysis, 2010, 22, 908-911.	2.9	11
46	The effect of a Co–Al mixed metal oxide coating on the elevated temperature performance of a LiMn2O4 cathode material. Journal of Power Sources, 2009, 189, 1147-1153.	7.8	35
47	Direct electrochemistry and electrocatalysis of horseradish peroxidase in MnO2 nanosheet film. Science Bulletin, 2008, 53, 1152-1156.	9.0	4
48	Studies on structure and electrochemical properties of pillared M–MnO2 (M=Ba2+, Sr2+, ZrO2+). Journal of Solid State Electrochemistry, 2007, 11, 1157-1162.	2.5	10
49	Study on the Photochromism of Ni–Al Layered Double Hydroxides Containing Nitrate Anions. European Journal of Inorganic Chemistry, 2006, 2006, 2831-2838.	2.0	69
50	Synthesis of magnetic Fe ₃ O ₄ @Al ³⁺ particles and its application in DNA extraction. Particulate Science and Technology, 0, , 1-8.	2.1	3