
James A Stewart Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1878705/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cardiac mast cell- and chymase-mediated matrix metalloproteinase activity and left ventricular remodeling in mitral regurgitation in the dog. Journal of Molecular and Cellular Cardiology, 2003, 35, 311-319.	1.9	126
2	Molecular mechanisms of AGE/RAGE-mediated fibrosis in the diabetic heart. World Journal of Diabetes, 2014, 5, 860.	3.5	94
3	Cardiac Fibroblast-Dependent Extracellular Matrix Accumulation Is Associated with Diastolic Stiffness in Type 2 Diabetes. PLoS ONE, 2013, 8, e72080.	2.5	71
4	Pharmacokinetics of three formulations of ondansetron hydrochloride in healthy volunteers: 24-mg oral tablet, rectal suppository, and i.v. infusion. American Journal of Health-System Pharmacy, 2000, 57, 1046-1050.	1.0	43
5	Mesenteric Resistance Arteries in Type 2 Diabetic db/db Mice Undergo Outward Remodeling. PLoS ONE, 2011, 6, e23337.	2.5	43
6	Temporal alterations in cardiac fibroblast function following induction of pressure overload. Cell and Tissue Research, 2010, 340, 117-126.	2.9	42
7	Exposure to an environmentally relevant mixture of organochlorine compounds and polychlorinated biphenyls Promotes hepatic steatosis in male <i>Ob/Ob</i> mice. Environmental Toxicology, 2017, 32, 1399-1411.	4.0	25
8	Extracellular matrix components isolated from diabetic mice alter cardiac fibroblast function through the AGE/RAGE signaling cascade. Life Sciences, 2020, 250, 117569.	4.3	19
9	RAGE Differentially Altered in vitro Responses in Vascular Smooth Muscle Cells and Adventitial Fibroblasts in Diabetes-Induced Vascular Calcification. Frontiers in Physiology, 2021, 12, 676727.	2.8	16
10	The Impact of Diabetic Conditions and AGE/RAGE Signaling on Cardiac Fibroblast Migration. Frontiers in Cell and Developmental Biology, 2020, 8, 112.	3.7	15
11	Rap1a Overlaps the AGE/RAGE Signaling Cascade to Alter Expression of α-SMA, p-NF-κB, and p-PKC-ζ in Cardiac Fibroblasts Isolated from Type 2 Diabetic Mice. Cells, 2021, 10, 557.	4.1	12
12	Persistent organic pollutants (POPs) increase rage signaling to promote downstream cardiovascular remodeling. Environmental Toxicology, 2019, 34, 1149-1159.	4.0	7
13	Rap1a Regulates Cardiac Fibroblast Contraction of 3D Diabetic Collagen Matrices by Increased Activation of the AGE/RAGE Cascade. Cells, 2021, 10, 1286.	4.1	7
14	Rap1a Activity Elevated the Impact of Endogenous AGEs in Diabetic Collagen to Stimulate Increased Myofibroblast Transition and Oxidative Stress. International Journal of Molecular Sciences, 2022, 23, 4480.	4.1	3
15	Receptor for advanced glycation end products is involved in remodeling of diabetic coronary arterioles. FASEB Journal, 2011, 25, 1025.11.	0.5	0