Pengcheng Tu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1878636/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Gut Microbiome Response to Sucralose and Its Potential Role in Inducing Liver Inflammation in Mice. Frontiers in Physiology, 2017, 8, 487.	1.3	184
2	The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS ONE, 2017, 12, e0178426.	1.1	175
3	Multi-Omics Reveals that Lead Exposure Disturbs Gut Microbiome Development, Key Metabolites, and Metabolic Pathways. Chemical Research in Toxicology, 2017, 30, 996-1005.	1.7	141
4	Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food and Chemical Toxicology, 2017, 107, 530-539.	1.8	129
5	The Effects of an Environmentally Relevant Level of Arsenic on the Gut Microbiome and Its Functional Metagenome. Toxicological Sciences, 2017, 160, 193-204.	1.4	101
6	Effects of the Artificial Sweetener Neotame on the Gut Microbiome and Fecal Metabolites in Mice. Molecules, 2018, 23, 367.	1.7	75
7	Nicotine Alters the Gut Microbiome and Metabolites of Gut–Brain Interactions in a Sex-Specific Manner. Chemical Research in Toxicology, 2017, 30, 2110-2119.	1.7	66
8	Gut Microbiome Toxicity: Connecting the Environment and Gut Microbiome-Associated Diseases. Toxics, 2020, 8, 19.	1.6	66
9	Sex-Specific Effects of Arsenic Exposure on the Trajectory and Function of the Gut Microbiome. Chemical Research in Toxicology, 2016, 29, 949-951.	1.7	63
10	Gut microbiome disruption altered the biotransformation and liver toxicity of arsenic in mice. Archives of Toxicology, 2019, 93, 25-35.	1.9	63
11	An Introduction to Next Generation Sequencing Bioinformatic Analysis in Gut Microbiome Studies. Biomolecules, 2021, 11, 530.	1.8	62
12	Serum Metabolomics Identifies Altered Bioenergetics, Signaling Cascades in Parallel with Exposome Markers in Crohn's Disease. Molecules, 2019, 24, 449.	1.7	55
13	Manganese-induced sex-specific gut microbiome perturbations in C57BL/6 mice. Toxicology and Applied Pharmacology, 2017, 331, 142-153.	1.3	54
14	Characterization of the Functional Changes in Mouse Gut Microbiome Associated with Increased <i>Akkermansia muciniphila</i> Population Modulated by Dietary Black Raspberries. ACS Omega, 2018, 3, 10927-10937.	1.6	49
15	Lipid and Cholesterol Homeostasis after Arsenic Exposure and Antibiotic Treatment in Mice: Potential Role of the Microbiota. Environmental Health Perspectives, 2019, 127, 97002.	2.8	40
16	Profound perturbation induced by triclosan exposure in mouse gut microbiome: a less resilient microbial community with elevated antibiotic and metal resistomes. BMC Pharmacology & Toxicology, 2017, 18, 46.	1.0	37
17	The Carbamate Aldicarb Altered the Gut Microbiome, Metabolome, and Lipidome of C57BL/6J Mice. Chemical Research in Toxicology, 2019, 32, 67-79.	1.7	37
18	Editor's Highlight: Organophosphate Diazinon Altered Quorum Sensing, Cell Motility, Stress Response, and Carbohydrate Metabolism of Gut Microbiome. Toxicological Sciences, 2017, 157, 354-364.	1.4	33

Pengcheng Tu

#	Article	IF	CITATIONS
19	Chronic Arsenic Exposure Induces Oxidative Stress and Perturbs Serum Lysolipids and Fecal Unsaturated Fatty Acid Metabolism. Chemical Research in Toxicology, 2019, 32, 1204-1211.	1.7	30
20	The organophosphate malathion disturbs gut microbiome development and the quorum-Sensing system. Toxicology Letters, 2018, 283, 52-57.	0.4	28
21	Individual susceptibility to arsenic-induced diseases: the role of host genetics, nutritional status, and the gut microbiome. Mammalian Genome, 2018, 29, 63-79.	1.0	27
22	Canidin-3-glucoside prevents nano-plastics induced toxicity via activating autophagy and promoting discharge. Environmental Pollution, 2021, 274, 116524.	3.7	24
23	Quantitative proteomics reveals systematic dysregulations of liver protein metabolism in sucralose-treated mice. Journal of Proteomics, 2019, 196, 1-10.	1.2	22
24	Subchronic low-dose 2,4-D exposure changed plasma acylcarnitine levels and induced gut microbiome perturbations in mice. Scientific Reports, 2019, 9, 4363.	1.6	22
25	Food-derived cyanidin-3-O-glucoside reverses microplastic toxicity <i>via</i> promoting discharge and modulating the gut microbiota in mice. Food and Function, 2022, 13, 1447-1458.	2.1	21
26	Detection of gut microbiota and pathogen produced N-acyl homoserine in host circulation and tissues. Npj Biofilms and Microbiomes, 2021, 7, 53.	2.9	20
27	Serum Metabolomics Reveals That Gut Microbiome Perturbation Mediates Metabolic Disruption Induced by Arsenic Exposure in Mice. Journal of Proteome Research, 2019, 18, 1006-1018.	1.8	19
28	Studies of xenobiotic-induced gut microbiota dysbiosis: from correlation to mechanisms. Gut Microbes, 2021, 13, 1921912.	4.3	19
29	A Rapid Screening Method of Candidate Probiotics for Inflammatory Bowel Diseases and the Anti-inflammatory Effect of the Selected Strain Bacillus smithii XY1. Frontiers in Microbiology, 2021, 12, 760385.	1.5	18
30	Food-derived cyanidin-3- <i>O</i> -glucoside alleviates oxidative stress: evidence from the islet cell line and diabetic db/db mice. Food and Function, 2021, 12, 11599-11610.	2.1	17
31	Isobaric Labeling Quantitative Metaproteomics for the Study of Gut Microbiome Response to Arsenic. Journal of Proteome Research, 2019, 18, 970-981.	1.8	16
32	Antihyperglycemic effect of an anthocyanin, cyanidin-3- <i>O</i> -glucoside, is achieved by regulating GLUT-1 <i>via</i> the Wnt/β-catenin-WISP1 signaling pathway. Food and Function, 2022, 13, 4612-4623.	2.1	11
33	Metabolite Profiling of the Gut Microbiome in Mice with Dietary Administration of Black Raspberries. ACS Omega, 2020, 5, 1318-1325.	1.6	10
34	Dietary administration of black raspberries modulates arsenic biotransformation and reduces urinary 8-oxo-2′-deoxyguanosine in mice. Toxicology and Applied Pharmacology, 2019, 377, 114633.	1.3	6
35	Protective role of bayberry extract: associations with gut microbiota modulation and key metabolites. Food and Function, 2022, 13, 5547-5558.	2.1	6
36	Metabolomics reveals key resistant responses in tomato fruit induced by Cryptococcus laurentii. Food Chemistry Molecular Sciences, 2022, 4, 100066.	0.9	4

#	Article	IF	CITATIONS
37	A Black Raspberry-Rich Diet Protects From Dextran Sulfate Sodium-Induced Intestinal Inflammation and Host Metabolic Perturbation in Association With Increased Aryl Hydrocarbon Receptor Ligands in the Gut Microbiota of Mice. Frontiers in Nutrition, 0, 9, .	1.6	4
38	Cyanidin-3- <i>O</i> -glucoside reduces nanopolystyrene-induced toxicity and accumulation: roles of mitochondrial energy metabolism and cellular efflux. Environmental Science: Nano, 2022, 9, 2572-2586.	2.2	3