List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1878423/publications.pdf Version: 2024-02-01

<u>Ενα ς Γινιρςτρ</u>ά**η**Μ

#	Article	IF	CITATIONS
1	Warming mediates the resistance of aquatic bacteria to invasion during community coalescence. Molecular Ecology, 2021, 30, 1345-1356.	3.9	9
2	High Iron Requirements for Growth in the Nuisance Alga <i>Gonyostomum semen</i> (Raphidophyceae). Journal of Phycology, 2021, 57, 1309-1322.	2.3	6
3	Comprehensive analysis of chemical and biological problems associated with browning agents used in aquatic studies. Limnology and Oceanography: Methods, 2021, 19, 818-835.	2.0	11
4	Streamlined and Abundant Bacterioplankton Thrive in Functional Cohorts. MSystems, 2020, 5, .	3.8	8
5	Different Roles of Environmental Selection, Dispersal, and Drift in the Assembly of Intestinal Microbial Communities of Freshwater Fish With and Without a Stomach. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	10
6	Using null models to compare bacterial and microeukaryotic metacommunity assembly under shifting environmental conditions. Scientific Reports, 2020, 10, 2455.	3.3	64
7	Factors influencing aquatic and terrestrial bacterial community assembly. Environmental Microbiology Reports, 2019, 11, 306-315.	2.4	152
8	Sharing of photobionts in sympatric populations of Thamnolia and Cetraria lichens: evidence from high-throughput sequencing. Scientific Reports, 2018, 8, 4406.	3.3	29
9	Dispersal timing determines the importance of priority effects in bacterial communities. ISME Journal, 2018, 12, 644-646.	9.8	44
10	Decomposing multiple dimensions of stability in global change experiments. Ecology Letters, 2018, 21, 21-30.	6.4	167
11	High abundances of the nuisance raphidophyte Gonyostomum semen in brown water lakes are associated with high concentrations of iron. Scientific Reports, 2018, 8, 13463.	3.3	18
12	Repeated disturbances affect functional but not compositional resistance and resilience in an aquatic bacterioplankton community. Environmental Microbiology Reports, 2018, 10, 493-500.	2.4	18
13	Increased water colour affects freshwater plankton communities in a mesocosm study. Aquatic Microbial Ecology, 2018, 81, 1-17.	1.8	27
14	Effects of sterilization on dissolved organic carbon (DOC) composition and bacterial utilization of DOC from lakes. Aquatic Microbial Ecology, 2018, 82, 199-208.	1.8	8
15	Contribution of different bacterial dispersal sources to lakes: Population and community effects in different seasons. Environmental Microbiology, 2017, 19, 2391-2404.	3.8	50
16	Influence of pulsed and continuous substrate inputs on freshwater bacterial community composition and functioning in bioreactors. Environmental Microbiology, 2017, 19, 5078-5087.	3.8	7
17	Contribution of different dispersal sources to the metabolic response of lake bacterioplankton following a salinity change. Environmental Microbiology, 2017, 19, 251-260.	3.8	19
18	OVERVIEW Progress and perspectives in aquatic microbial ecology: highlights of the SAME 14, Uppsala, Sweden, 2015. Aquatic Microbial Ecology, 2017, 80, 101-103.	1.8	0

#	Article	IF	CITATIONS
19	Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes?. Frontiers in Microbiology, 2016, 7, 214.	3.5	479
20	Remnants of marine bacterial communities can be retrieved from deep sediments in lakes of marine origin. Environmental Microbiology Reports, 2016, 8, 479-485.	2.4	10
21	Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. ISME Journal, 2016, 10, 533-545.	9.8	418
22	Combined effects of zooplankton grazing and dispersal on the diversity and assembly mechanisms of bacterial metacommunities. Environmental Microbiology, 2015, 17, 2275-2287.	3.8	47
23	Relationships between Bacterial Community Composition, Functional Trait Composition and Functioning Are Context Dependent – but What Is the Context?. PLoS ONE, 2014, 9, e112409.	2.5	2
24	The spatial structure of bacterial communities is influenced by historical environmental conditions. Ecology, 2014, 95, 1134-1140.	3.2	67
25	Can marine bacteria be recruited from freshwater sources and the air?. ISME Journal, 2014, 8, 2423-2430.	9.8	55
26	Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME Journal, 2013, 7, 937-948.	9.8	330
27	Unveiling Distribution Patterns of Freshwater Phytoplankton by a Next Generation Sequencing Based Approach. PLoS ONE, 2013, 8, e53516.	2.5	120
28	Variable Effects of Dispersal on Productivity of Bacterial Communities Due to Changes in Functional Trait Composition. PLoS ONE, 2013, 8, e80825.	2.5	20
29	Importance of space and the local environment for linking local and regional abundances of microbes. Aquatic Microbial Ecology, 2012, 67, 35-45.	1.8	8
30	Unraveling assembly of stream biofilm communities. ISME Journal, 2012, 6, 1459-1468.	9.8	242
31	Freshwater bacterioplankton richness in oligotrophic lakes depends on nutrient availability rather than on species–area relationships. ISME Journal, 2012, 6, 1127-1136.	9.8	105
32	Local and regional factors influencing bacterial community assembly. Environmental Microbiology Reports, 2012, 4, 1-9.	2.4	434
33	Which sequencing depth is sufficient to describe patterns in bacterial α―and βâ€diversity?. Environmental Microbiology Reports, 2012, 4, 367-372.	2.4	117
34	Function-specific response to depletion of microbial diversity. ISME Journal, 2011, 5, 351-361.	9.8	183
35	The Importance of Dispersal for Bacterial Community Composition and Functioning. PLoS ONE, 2011, 6, e25883.	2.5	82
36	Changing phosphorus concentration and subsequent prophage induction alter composition of a freshwater viral assemblage. Freshwater Biology, 2010, 55, 1984-1996.	2.4	6

#	Article	IF	CITATIONS
37	Species sorting affects bacterioplankton community composition as determined by 16S rDNA and 16S rRNA fingerprints. ISME Journal, 2010, 4, 729-738.	9.8	93
38	Regional invariance among microbial communities. Ecology Letters, 2010, 13, 118-127.	6.4	129
39	Ubiquity of <i>Polynucleobacter necessarius</i> ssp. <i>asymbioticus</i> in lentic freshwater habitats of a heterogenous 2000 km ² area. Environmental Microbiology, 2010, 12, 658-669.	3.8	115
40	The interplay between bacterial community composition and the environment determining function of inland water bacteria. Limnology and Oceanography, 2010, 55, 2052-2060.	3.1	35
41	Temporal variation in freshwater viral and bacterial community composition. Freshwater Biology, 2008, 53, 1163-1175.	2.4	41
42	Variable importance of viralâ€induced bacterial mortality along gradients of trophic status and humic content in lakes. Freshwater Biology, 2008, 53, 1101-1113.	2.4	36
43	Composition and dispersal of riverine and lake phytoplankton communities in connected systems with different water retention times. Freshwater Biology, 2008, 53, 2520-2529.	2.4	8
44	Biogeography of Bacterioplankton in Inland Waters. Freshwater Reviews: A Journal of the Freshwater Biological Association, 2008, 1, 99-114.	1.0	106
45	DOES ECOSYSTEM SIZE DETERMINE AQUATIC BACTERIAL RICHNESS? COMMENT. Ecology, 2007, 88, 252-253.	3.2	16
46	First evidence for a bipolar distribution of dominant freshwater lake bacterioplankton. Antarctic Science, 2007, 19, 245-252.	0.9	38
47	THE ROLE OF ENVIRONMENTAL AND SPATIAL PROCESSES IN STRUCTURING LAKE COMMUNITIES FROM BACTERIA TO FISH. Ecology, 2006, 87, 2985-2991.	3.2	446
48	External control of bacterial community structure in lakes. Limnology and Oceanography, 2006, 51, 339-342.	3.1	108
49	Influence of dissolved organic matter source on lake bacterioplankton structure and function ¢€" implications for seasonal dynamics of community composition. FEMS Microbiology Ecology, 2006, 56, 406-417.	2.7	115
50	Structure and Function of Bacterial Communities Emerging from Different Sources under Identical Conditions. Applied and Environmental Microbiology, 2006, 72, 212-220.	3.1	155
51	Community composition of bacterioplankton and cell transport in lakes in two different drainage areas. Aquatic Sciences, 2005, 67, 210-219.	1.5	42
52	Weak coupling between community composition and functioning of aquatic bacteria. Limnology and Oceanography, 2005, 50, 957-967.	3.1	170
53	Distribution of Typical Freshwater Bacterial Groups Is Associated with pH, Temperature, and Lake Water Retention Time. Applied and Environmental Microbiology, 2005, 71, 8201-8206.	3.1	402
54	Production and food web interactions of Arctic freshwater plankton and responses to increased DOC. Archiv Für Hydrobiologie, 2004, 159, 289-307.	1.1	19

#	Article	IF	CITATIONS
55	Response of a member of the Verrucomicrobia, among the dominating bacteria in a hypolimnion, to increased phosphorus availability. Journal of Plankton Research, 2004, 26, 241-246.	1.8	56
56	Influence of inlet bacteria on bacterioplankton assemblage composition in lakes of different hydraulic retention time. Limnology and Oceanography, 2004, 49, 125-136.	3.1	87
57	Growth dynamics within bacterial communities in riverine and estuarine batch cultures. Aquatic Microbial Ecology, 2004, 37, 137-148.	1.8	16
58	Viral and Bacterioplankton Dynamics in Two Lakes with Different Humic Contents. Microbial Ecology, 2003, 46, 406-415.	2.8	40
59	Rapid Screening for Freshwater Bacterial Groups by Using Reverse Line Blot Hybridization. Applied and Environmental Microbiology, 2003, 69, 5875-5883.	3.1	100
60	Live sorting and survival of unstained and DAPI-stained ciliates by flow cytometry. Archiv Für Hydrobiologie, 2003, 157, 173-184.	1.1	1
61	Interactive effect of temperature and food concentration on growth rate: A test case using the small freshwater ciliate <i>Urotricha farcta</i> . Limnology and Oceanography, 2002, 47, 1447-1455.	3.1	69
62	Enumeration of small ciliates in culture by flow cytometry and nucleic acid staining. Journal of Microbiological Methods, 2002, 49, 173-182.	1.6	30
63	Do neighboring lakes share common taxa of bacterioplankton? Comparison of 16S rDNA fingerprints and sequences from three geographic regions. Microbial Ecology, 2002, 44, 1-9.	2.8	56
64	Investigating Influential Factors on Bacterioplankton Community Composition: Results from a Field Study of Five Mesotrophic Lakes. Microbial Ecology, 2001, 42, 598-605.	2.8	83
65	Bacterioplankton community composition in a boreal forest lake. FEMS Microbiology Ecology, 1998, 27, 163-174.	2.7	41