JérÃ'me Santolini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1877852/publications.pdf

Version: 2024-02-01

43 papers

2,728 citations

304743 22 h-index 42 g-index

43 all docs

43 docs citations

43 times ranked

2873 citing authors

#	Article	IF	CITATIONS
1	COVID-19: A Redox Disease—What a Stress Pandemic Can Teach Us About Resilience and What We May Learn from the Reactive Species Interactome About Its Treatment. Antioxidants and Redox Signaling, 2021, 35, 1226-1268.	5.4	28
2	Response to Verd and Verd Re: "COVID-19: A Redox Diseaseâ€"What a Stress Pandemic Can Teach Us About Resilience and What We May Learn from the Reactive Species Interactome About Its Treatmentâ€. Antioxidants and Redox Signaling, 2021, 35, 1271-1272.	5.4	0
3	Electroanalysis at a Single Giant Vesicle Generating Enzymatically a Reactive Oxygen Species. Analytical Chemistry, 2021, 93, 13143-13151.	6.5	5
4	The Redox architecture of physiological function. Current Opinion in Physiology, 2019, 9, 34-47.	1.8	79
5	The evolution of nitric oxide signalling diverges between animal and green lineages. Journal of Experimental Botany, 2019, 70, 4355-4364.	4.8	42
6	Mechanism and regulation of ferrous heme-nitric oxide (NO) oxidation in NO synthases. Journal of Biological Chemistry, 2019, 294, 7904-7916.	3.4	21
7	What does Idquo NO-Synthase rdquo stand for. Frontiers in Bioscience - Landmark, 2019, 24, 133-171.	3.0	24
8	Revisiting the Val/Ile Mutation in Mammalian and Bacterial Nitric Oxide Synthases: A Spectroscopic and Kinetic Study. Biochemistry, 2017, 56, 748-756.	2.5	8
9	The NOS-like protein from the microalgae Ostreococcus tauri is a genuine and ultrafast NO-producing enzyme. Plant Science, 2017, 265, 100-111.	3.6	43
10	Nitric oxide synthase in plants: Where do we stand?. Nitric Oxide - Biology and Chemistry, 2017, 63, 30-38.	2.7	173
11	A heme-binding domain controls regulation of ATP-dependent potassium channels. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3785-3790.	7.1	53
12	Oxygen activation in <scp>NO</scp> synthases: evidence for a direct role of the substrate. FEBS Open Bio, 2016, 6, 386-397.	2.3	8
13	Redox Control of the Human Iron-Sulfur Repair Protein MitoNEET Activity via Its Iron-Sulfur Cluster. Journal of Biological Chemistry, 2016, 291, 7583-7593.	3.4	57
14	Analysis of the Expression and Activity of Nitric Oxide Synthase from Marine Photosynthetic Microorganisms. Methods in Molecular Biology, 2016, 1424, 149-162.	0.9	6
15	Reaction Intermediates and Molecular Mechanism of Peroxynitrite Activation by NO Synthases. Biophysical Journal, 2016, 111, 2099-2109.	0.5	5
16	EPR Characterisation of the Ferrous Nitrosyl Complex Formed within the Oxygenase Domain of NO Synthase. ChemBioChem, 2013, 14, 1852-1857.	2.6	2
17	A Novel Cryo-Reduction Method to Investigate the Molecular Mechanism of Nitric Oxide Synthases. Journal of Physical Chemistry B, 2012, 116, 5595-5603.	2.6	4
18	Electron Paramagnetic Resonance Characterization of Tetrahydrobiopterin Radical Formation in Bacterial Nitric Oxide Synthase Compared to Mammalian Nitric Oxide Synthase. Biophysical Journal, 2012, 103, 109-117.	0.5	14

#	Article	IF	CITATIONS
19	Heme Binding Properties of Glyceraldehyde-3-phosphate Dehydrogenase. Biochemistry, 2012, 51, 8514-8529.	2.5	56
20	Arg375 tunes tetrahydrobiopterin functions and modulates catalysis by inducible nitric oxide synthase. Journal of Inorganic Biochemistry, 2012, 108, 203-215.	3.5	10
21	The Conserved Trp–Cys Hydrogen Bond Dampens the "Push Effect―of the Heme Cysteinate Proximal Ligand during the First Catalytic Cycle of Nitric Oxide Synthase. Biochemistry, 2011, 50, 10069-10081.	2.5	26
22	The molecular mechanism of mammalian NO-synthases: A story of electrons and protons. Journal of Inorganic Biochemistry, 2011, 105, 127-141.	3.5	70
23	The Proximal Hydrogen Bond Network Modulates Bacillus subtilis Nitric-oxide Synthase Electronic and Structural Properties. Journal of Biological Chemistry, 2011, 286, 11997-12005.	3.4	20
24	NO synthase isoforms specifically modify peroxynitrite reactivity. FEBS Journal, 2010, 277, 3963-3973.	4.7	12
25	Role of Arginine Guanidinium Moiety in Nitric-oxide Synthase Mechanism of Oxygen Activation. Journal of Biological Chemistry, 2010, 285, 7233-7245.	3.4	27
26	Fast ferrous heme–NO oxidation in nitric oxide synthases. FEBS Journal, 2009, 276, 4505-4514.	4.7	25
27	Activation of Peroxynitrite by Inducible Nitric-oxide Synthase. Journal of Biological Chemistry, 2007, 282, 14101-14112.	3.4	32
28	Differential Effects of Alkyl- and Arylguanidines on the Stability and Reactivity of Inducible NOS Hemeâ~'Dioxygen Complexesâ€. Biochemistry, 2006, 45, 3988-3999.	2.5	11
29	Resonance Raman Study ofBacillus subtilisNO Synthase-like Protein: Similarities and Differences with Mammalian NO Synthasesâ€. Biochemistry, 2006, 45, 1480-1489.	2.5	34
30	A Tryptophan that Modulates Tetrahydrobiopterin-Dependent Electron Transfer in Nitric Oxide Synthase Regulates Enzyme Catalysis by Additional Mechanismsâ€. Biochemistry, 2005, 44, 4676-4690.	2.5	22
31	Update on Mechanism and Catalytic Regulation in the NO Synthases. Journal of Biological Chemistry, 2004, 279, 36167-36170.	3.4	450
32	Radical reactions of nitric oxide synthases. Biochemical Society Symposia, 2004, 71, 39-49.	2.7	18
33	Predicting the conformational states of cyclic tetrapeptides. Biopolymers, 2003, 69, 363-385.	2.4	37
34	Distinct Influence of N-terminal Elements on Neuronal Nitric-oxide Synthase Structure and Catalysis. Journal of Biological Chemistry, 2003, 278, 37122-37131.	3.4	25
35	An Insight into the Mechanism of Inhibition and Reactivation of the F1-ATPases by Tentoxinâ€. Biochemistry, 2002, 41, 6008-6018.	2.5	8
36	Rebuilt 3D structure of the chloroplast f1 ATPase-tentoxin complex. Proteins: Structure, Function and Bioinformatics, 2002, 49, 302-320.	2.6	2

#	Article	IF	CITATIONS
37	A Kinetic Simulation Model That Describes Catalysis and Regulation in Nitric-oxide Synthase. Journal of Biological Chemistry, 2001, 276, 1233-1243.	3.4	88
38	Neuronal Nitric-oxide Synthase Mutant (Ser-1412 â†' Asp) Demonstrates Surprising Connections between Heme Reduction, NO Complex Formation, and Catalysis. Journal of Biological Chemistry, 2001, 276, 1244-1252.	3.4	101
39	Differences in Three Kinetic Parameters Underpin the Unique Catalytic Profiles of Nitric-oxide Synthases I, II, and III. Journal of Biological Chemistry, 2001, 276, 48887-48898.	3.4	108
40	Kinetic Analysis of Tentoxin Binding to Chloroplast F1-ATPase. Journal of Biological Chemistry, 1999, 274, 849-858.	3.4	19
41	Interrelation between High and Low Affinity Tentoxin Binding Sites in Chloroplast F1-ATPase Revealed by Synthetic Analogues. Journal of Biological Chemistry, 1998, 273, 3343-3350.	3.4	6
42	Actin Depolymerizing Factor (ADF/Cofilin) Enhances the Rate of Filament Turnover: Implication in Actin-based Motility. Journal of Cell Biology, 1997, 136, 1307-1322.	5.2	948
43	Analogues of tentoxin: Tools for mechanistic investigations. International Journal of Peptide Research and Therapeutics, 1997, 4, 283-288.	0.1	1