
## JérÃ'me Rossignol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1877401/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                     | lF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Real-Time Detection of Phenylacetaldehyde in Wine: Application of a Microwave Sensor Based on<br>Molecularly Imprinted Silica. Molecules, 2022, 27, 1492.                                                   | 3.8 | 2         |
| 2  | From microwave gas sensor conditioning to ammonia concentration prediction by machine learning.<br>Sensors and Actuators B: Chemical, 2022, 367, 132138.                                                    | 7.8 | 6         |
| 3  | Passive Resonant Sensors: Trends and Future Prospects. IEEE Sensors Journal, 2021, 21, 12618-12632.                                                                                                         | 4.7 | 29        |
| 4  | Detection of organoleptic faults in wine by microwave sensor coupled with molecularly imprinted silica. , 2021, , .                                                                                         |     | 0         |
| 5  | A First Tentative for Simultaneous Detection of Fungicides in Model and Real Wines by Microwave<br>Sensor Coupled to Molecularly Imprinted Sol-Gel Polymers. Sensors, 2020, 20, 6224.                       | 3.8 | 5         |
| 6  | Critical Influence of Dielectric Sensitive Material and Manufactured Process in Microwave<br>Gas-Sensing: Application of Ammonia Detection with an Interdigital Sensor. ACS Omega, 2020, 5,<br>11507-11514. | 3.5 | 16        |
| 7  | Feasibility of a microwave liquid sensor based on molecularly imprinted sol-gel polymer for the detection of iprodione fungicide. Sensors and Actuators B: Chemical, 2017, 244, 24-30.                      | 7.8 | 22        |
| 8  | Microstrip Spiral Resonator For Microwave-Based Gas Sensing. , 2017, 1, 1-4.                                                                                                                                |     | 31        |
| 9  | NAP-XPS Study of Ethanol Adsorption on TiO2 Surfaces and Its Impact on Microwave-Based Gas<br>Sensors Response. Proceedings (mdpi), 2017, 1, .                                                              | 0.2 | 3         |
| 10 | Microwave microscopy applied to EMC problem: Visualisation of electromagnetic field in the vicinity of electronic circuit and effect of nanomaterial coating. Advanced Electromagnetics, 2017, 6, 33.       | 1.0 | 1         |
| 11 | Influence of the Design in Microwave-based Gas Sensors: Ammonia Detection with Titania<br>Nanoparticles. Procedia Engineering, 2016, 168, 264-267.                                                          | 1.2 | 15        |
| 12 | In situ Pesticide Detection in Food Processing by Microwave Transduction Combined with Molecularly Imprinted Polymers. Procedia Engineering, 2016, 168, 550-552.                                            | 1.2 | 1         |
| 13 | Microwave Gas Sensing with Hematite: Shape Effect on Ammonia Detection Using Pseudocubic,<br>Rhombohedral, and Spindlelike Particles. ACS Sensors, 2016, 1, 656-662.                                        | 7.8 | 32        |
| 14 | Microwave gas sensing with a microstrip interDigital capacitor: Detection of NH3 with TiO2 nanoparticles. Sensors and Actuators B: Chemical, 2016, 236, 554-564.                                            | 7.8 | 72        |
| 15 | Determination of burn depth in the ablation of atrial fibrillation using an open-ended coaxial probe.<br>Sensors and Actuators B: Chemical, 2015, 209, 1097-1101.                                           | 7.8 | 4         |
| 16 | Detection of VOCs by microwave transduction using dealuminated faujasite DAY zeolites as gas sensitive materials. Sensors and Actuators B: Chemical, 2015, 213, 558-565.                                    | 7.8 | 33        |
| 17 | Shape-controlled Synthesis of Hematite for Microwave Gas Sensing. Procedia Engineering, 2015, 120, 764-768.                                                                                                 | 1.2 | 5         |
| 18 | Microwave signature for gas sensing: 2005 to present. Urban Climate, 2015, 14, 502-515.                                                                                                                     | 5.7 | 16        |

Jérôme Rossignol

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | VOCs Detection by Microwave Transduction Using Zeolites as Sensitive Material. Procedia Engineering, 2014, 87, 1019-1022.                                                                     | 1.2 | 5         |
| 20 | Metal Oxide Nanoparticles Obtained by Microwave Synthesis and Application in Gas Sensing by<br>Microwave Transduction. Key Engineering Materials, 2014, 605, 299-302.                         | 0.4 | 2         |
| 21 | Assessment of Burn Depths on Organs by Microwave. Procedia Engineering, 2014, 87, 308-311.                                                                                                    | 1.2 | 6         |
| 22 | Microwave-based gas sensor with phthalocyanine film at room temperature. Sensors and Actuators B:<br>Chemical, 2013, 189, 213-216.                                                            | 7.8 | 48        |
| 23 | The multimodal detection as a tool for molecular material-based gas sensing. Sensors and Actuators<br>B: Chemical, 2013, 187, 204-208.                                                        | 7.8 | 6         |
| 24 | Deposition and production of highly reproducible hybrid Cu[( <i>t</i> Bu) <sub>4</sub> Pc]â€polystyrene<br>thin layers via spin casting. Polymer Engineering and Science, 2013, 53, 524-530.  | 3.1 | 3         |
| 25 | Rhombohedral and pseudocubic nanocrystals of hematite were obtained via a low cost and environmentally friendly microwave route. Annales De Chimie: Science Des Materiaux, 2013, 38, 215-221. | 0.4 | Ο         |
| 26 | Development of Gas Sensors by Microwave Transduction with Phthalocyanine Film. Procedia<br>Engineering, 2012, 47, 1191-1194.                                                                  | 1.2 | 6         |
| 27 | Non-destructive technique to detect local buried defects in metal sample by scanning microwave microscopy. Sensors and Actuators A: Physical, 2012, 186, 219-222.                             | 4.1 | 6         |
| 28 | Imaging of Located Buried Defects in Metal Samples by an Scanning Microwave Microscopy. Procedia<br>Engineering, 2011, 25, 1637-1640.                                                         | 1.2 | 2         |
| 29 | Differential study of substituted and unsubstituted cobalt phthalocyanines for gas sensor applications. Sensors and Actuators B: Chemical, 2011, 159, 163-170.                                | 7.8 | 70        |
| 30 | Enhanced chemosensing of ammonia based on the novel molecular semiconductor-doped insulator<br>(MSDI) heterojunctions. Sensors and Actuators B: Chemical, 2011, 155, 165-173.                 | 7.8 | 38        |
| 31 | Development of microwave gas sensors. Sensors and Actuators B: Chemical, 2011, 157, 374-379.                                                                                                  | 7.8 | 56        |
| 32 | Detection of defects buried in metallic samples by scanning microwave microscopy. Physical Review B, 2011, 83, .                                                                              | 3.2 | 81        |
| 33 | Broadband microwave gas sensor: A coaxial design. Microwave and Optical Technology Letters, 2010, 52, 1739-1741.                                                                              | 1.4 | 9         |
| 34 | Contribution of Nanotechnologies on the Study of the Physical Phenomena of the Arc Birth. , 2010, , .                                                                                         |     | 0         |
| 35 | Influence of the tip effect of a carbon nanostructure on low current electrical arc initiation.<br>Materials Letters, 2009, 63, 2611-2614.                                                    | 2.6 | 1         |
| 36 | Fluorine addition to single-wall carbon nanotubes revisited. Chemical Physics Letters, 2009, 468, 231-233.                                                                                    | 2.6 | 15        |

Jérôme Rossignol

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Rapid synthesis of tin (IV) oxide nanoparticles by microwave induced thermohydrolysis. Journal of<br>Solid State Chemistry, 2008, 181, 1439-1444.                                                                      | 2.9 | 75        |
| 38 | Contribution to the assessment of the power balance at the electrodes of an electric arc in air.<br>Plasma Sources Science and Technology, 2008, 17, 035001.                                                           | 3.1 | 14        |
| 39 | EXPERIMENTAL OBSERVATION OF THE INTERACTION BETWEEN A MICROSCOPIC CATHODE TIP AND ELECTRICAL ARC. High Temperature Material Processes, 2008, 12, 55-64.                                                                | 0.6 | 2         |
| 40 | A FIRST ATTEMPT TO CONNECT A MICROSCOPIC VISION OF THE CATHODE FRAGMENT AND MICRO SPOT TO A MACROSCOPIC APPROACH OF THE CATHODE ARC ROOT: A MULTI-SCALE PROBLEM. High Temperature Material Processes, 2008, 12, 39-54. | 0.6 | 1         |
| 41 | Thermal model of the evolution of fragments inside a microscopic spot: A multiscale approach of the interaction plasma/cathode. , 2007, , .                                                                            |     | 0         |
| 42 | Metal oxide-based gas sensor and microwave broad-band measurements: an innovative approach to gas sensing. Journal of Physics: Conference Series, 2007, 76, 012043.                                                    | 0.4 | 8         |
| 43 | Experimental approach of the interaction between a sub-microscopic cathode tip and the plasma. , 2007, , .                                                                                                             |     | 0         |
| 44 | Une nouvelle technique de détection des endommagements dans les composites basée sur l'utilisation<br>des micro-ondes et des circuits microrubans résonants. Comptes Rendus - Mecanique, 2006, 334,<br>719-724.        | 2.1 | 3         |
| 45 | Détection d'endommagement dans les composites fibres/résine à l'aide de la technologie micro-onde.<br>Revue Des Composites Et Des Materiaux Avances, 2006, 16, 263-278.                                                | 0.6 | 0         |
| 46 | A comparative study of the behaviour of silver, copper and nickel submitted to a constant high power flux density. EPJ Applied Physics, 2005, 31, 45-51.                                                               | 0.7 | 3         |
| 47 | The modelling of the cathode sheath of an electrical arc in vacuum. Journal Physics D: Applied Physics, 2003, 36, 1495-1503.                                                                                           | 2.8 | 13        |
| 48 | Numerical modelling of thermal ablation phenomena due to a cathodic spot. Journal Physics D: Applied Physics, 2000, 33, 2079-2086.                                                                                     | 2.8 | 22        |
| 49 | Damage in Composite Material: A Microwave Detection. Key Engineering Materials, 0, 605, 303-305.                                                                                                                       | 0.4 | 0         |