
Frits W Prinzen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1877276/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging. Journal of the American College of Cardiology, 1999, 33, 1735-1742.	1.2	608
2	Asynchronous Electrical Activation Induces Asymmetrical Hypertrophy of the Left Ventricular Wall. Circulation, 1998, 98, 588-595.	1.6	345
3	2012 EHRA/HRS expert consensus statement on cardiac resynchronization therapy in heart failure: implant and follow-up recommendations and management. Heart Rhythm, 2012, 9, 1524-1576.	0.3	300
4	Left bundle branch block induces ventricular remodelling and functional septal hypoperfusion. European Heart Journal, 2005, 26, 91-98.	1.0	299
5	Relation Between the Pacing Induced Sequence of Activation and Left Ventricular Pump Function in Animals. PACE - Pacing and Clinical Electrophysiology, 2002, 25, 484-498.	0.5	261
6	Left Bundle-Branch Block Induced by Transcatheter Aortic Valve Implantation Increases Risk of Death. Circulation, 2012, 126, 720-728. 2012 FHRAINES expert consensus statement on cardiac resynchronization therapy in heart failure:	1.6	253
7	implant and follow-up recommendations and management: A registered branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society; and in collaboration with the Heart Failure Society of America (HFSA), the American Society of Echocardiography (ASE), the American Heart		

Association (ÁHA), the European Association of Echocardiography (EAE) of the ESC and the Heart

#	Article	IF	CITATIONS
19	Septal Deformation Patterns Delineate Mechanical Dyssynchrony and Regional Differences in Contractility. Circulation: Heart Failure, 2012, 5, 87-96.	1.6	122
20	Cardiac Resynchronization Therapy. Circulation, 2013, 128, 2407-2418.	1.6	116
21	Left Ventricular Endocardial Pacing Improves Resynchronization Therapy in Canine Left Bundle-Branch Hearts. Circulation: Arrhythmia and Electrophysiology, 2009, 2, 580-587.	2.1	111
22	Feasibility and Acute Hemodynamic Effect of Left Ventricular Septal Pacing by Transvenous Approach Through the Interventricular Septum. Circulation: Arrhythmia and Electrophysiology, 2016, 9, e003344.	2.1	108
23	Left Ventricular Septal and Left Ventricular Apical Pacing Chronically Maintain Cardiac Contractile Coordination, Pump Function and Efficiency. Circulation: Arrhythmia and Electrophysiology, 2009, 2, 571-579.	2.1	102
24	Occurrence, fate and consequences of ventricular conduction abnormalities after transcatheter aortic valve implantation. EuroIntervention, 2014, 9, 1142-1150.	1.4	98
25	Multipoint pacing by a left ventricular quadripolar lead improves the acute hemodynamic response to CRT compared with conventional biventricular pacing at any site. Heart Rhythm, 2015, 12, 975-981.	0.3	97
26	Short-Term Hemodynamic and Electrophysiological Effects of CardiacÂResynchronization by LeftÂVentricular Septal Pacing. Journal of the American College of Cardiology, 2020, 75, 347-359.	1.2	96
27	Comparative Electromechanical and Hemodynamic Effects of Left Ventricular and Biventricular Pacing in Dyssynchronous Heart Failure. Journal of the American College of Cardiology, 2013, 62, 2395-2403.	1.2	94
28	InÂVivo Validation of ElectrocardiographicÂImaging. JACC: Clinical Electrophysiology, 2017, 3, 232-242.	1.3	93
29	Mechanical discoordination rather than dyssynchrony predicts reverse remodeling upon cardiac resynchronization. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H640-H646.	1.5	90
30	Determination of the Longest Intrapatient Left Ventricular Electrical Delay May Predict Acute Hemodynamic Improvement in Patients After Cardiac Resynchronization Therapy. Circulation: Arrhythmia and Electrophysiology, 2014, 7, 377-383.	2.1	89
31	Endocardial Left Ventricular Pacing Improves Cardiac Resynchronization Therapy in Chronic Asynchronous Infarction and Heart Failure Models. Circulation: Arrhythmia and Electrophysiology, 2012, 5, 191-200.	2.1	87
32	Quantification of interventricular asynchrony during LBBB and ventricular pacing. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H1370-H1378.	1.5	83
33	Ventricular Remodeling During Long-Term Right Ventricular Pacing Following His Bundle Ablation. American Journal of Cardiology, 2006, 97, 1223-1227.	0.7	82
34	Baseline left ventricular d <i>P</i> /d <i>t</i> _{max} rather than the acute improvement in d <i>P</i> /d <i>t</i> /d <i>t</i> /sub> max predicts clinical outcome in patients with cardiac resynchronization therapy. European Journal of Heart Failure, 2011, 13, 1126-1132.	2.9	78
35	Fast Simulation of Mechanical Heterogeneity in the Electrically Asynchronous Heart Using the MultiPatch Module. PLoS Computational Biology, 2015, 11, e1004284.	1.5	78
36	Left bundle branch pacing compared to left ventricular septal myocardial pacing increases interventricular dyssynchrony but accelerates left ventricular lateral wall depolarization. Heart Rhythm, 2021, 18, 1281-1289.	0.3	77

#	Article	IF	CITATIONS
37	Beneficial effects of biventricular pacing in chronically right ventricular paced patients with mild cardiomyopathy. Europace, 2010, 12, 223-229.	0.7	75
38	Strategies to improve cardiac resynchronization therapy. Nature Reviews Cardiology, 2014, 11, 481-493.	6.1	75
39	Vectorcardiographic QRS area as a novel predictor of response to cardiac resynchronization therapy. Journal of Electrocardiology, 2015, 48, 45-52.	0.4	74
40	Practical and conceptual limitations of tissue Doppler imaging to predict reverse remodelling in cardiac resynchronisation therapy. European Journal of Heart Failure, 2008, 10, 281-290.	2.9	73
41	Imaging asynchronous mechanical activation of the paced heart with tagged MRI. Magnetic Resonance in Medicine, 1998, 39, 507-513.	1.9	72
42	Optimization of left ventricular pacing site plus multipoint pacing improves remodeling and clinical response to cardiac resynchronization therapy at 1 year. Heart Rhythm, 2016, 13, 1644-1651.	0.3	72
43	Mechanistic Evaluation of Echocardiographic Dyssynchrony Indices. Circulation: Cardiovascular Imaging, 2012, 5, 491-499.	1.3	69
44	QRS Area Is a Strong Determinant of Outcome in Cardiac Resynchronization Therapy. Circulation: Arrhythmia and Electrophysiology, 2018, 11, e006497.	2.1	69
45	Timing of Depolarization and Contraction in the Paced Canine Left Ventricle:. Journal of Cardiovascular Electrophysiology, 2003, 14, S188-S195.	0.8	67
46	Myocardial Infarction Does Not Preclude Electrical and Hemodynamic Benefits of Cardiac Resynchronization Therapy in Dyssynchronous Canine Hearts. Circulation: Arrhythmia and Electrophysiology, 2010, 3, 361-368.	2.1	65
47	Transseptal Conduction as an Important Determinant for Cardiac Resynchronization Therapy, as Revealed by Extensive Electrical Mapping in the Dyssynchronous Canine Heart. Circulation: Arrhythmia and Electrophysiology, 2013, 6, 682-689.	2.1	59
48	Left ventricular lead placement in the latest activated region guided by coronary venous electroanatomic mapping. Europace, 2015, 17, 84-93.	0.7	58
49	Calculation of effective VV interval facilitates optimization of AV delay and VV interval in cardiac resynchronization therapy. Heart Rhythm, 2007, 4, 75-82.	0.3	57
50	Ventricular Pump Function and Pacing. Circulation: Arrhythmia and Electrophysiology, 2008, 1, 127-139.	2.1	55
51	Relation between regional electrical activation time and subepicardial fiber strain in the canine left ventricle. Pflugers Archiv European Journal of Physiology, 1993, 423-423, 78-87.	1.3	54
52	Acute electrical and hemodynamic effects of multisite left ventricular pacing for cardiac resynchronization therapy in the dyssynchronous canine heart. Heart Rhythm, 2014, 11, 119-125.	0.3	52
53	Right Ventricular Imaging and Computer Simulation for Electromechanical Substrate Characterization in Arrhythmogenic Right Ventricular Cardiomyopathy. Journal of the American College of Cardiology, 2016, 68, 2185-2197.	1.2	52
54	Patient-specific modelling of cardiac electrophysiology in heart-failure patients. Europace, 2014, 16, iv56-iv61.	0.7	51

#	Article	IF	CITATIONS
55	Pulmonary Right Ventricular Resynchronization in Congenital Heart Disease. Circulation: Cardiovascular Imaging, 2017, 10, .	1.3	51
56	Mechano-energetics of the asynchronous and resynchronized heart. Heart Failure Reviews, 2011, 16, 215-224.	1.7	48
57	Does Cardiac Resynchronization Therapy Benefit Patients With Right Bundle Branch Block. Circulation: Arrhythmia and Electrophysiology, 2014, 7, 532-542.	2.1	48
58	Trends in the occurrence of new conduction abnormalities after transcatheter aortic valve implantation. Catheterization and Cardiovascular Interventions, 2015, 85, E144-52.	0.7	47
59	Tailoring cardiac resynchronization therapy using interventricular asynchrony. Validation of a simple model. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H968-H977.	1.5	45
60	Surveillance of COVID-19 in the General Population Using an Online Questionnaire: Report From 18,161 Respondents in China. JMIR Public Health and Surveillance, 2020, 6, e18576.	1.2	45
61	Right ventricular free wall pacing improves cardiac pump function in severe pulmonary arterial hypertension: a computer simulation analysis. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H2196-H2205.	1.5	44
62	Septal Rebound Stretch is a Strong Predictor of Outcome After Cardiac Resynchronization Therapy. Journal of Cardiac Failure, 2012, 18, 404-412.	0.7	44
63	Vectorcardiographic QRS area identifies delayed left ventricular lateral wall activation determined by electroanatomic mapping in candidates for cardiac resynchronization therapy. Heart Rhythm, 2016, 13, 217-225.	0.3	44
64	Mechanoelectrical coupling enhances initiation and affects perpetuation of atrial fibrillation during acute atrial dilation. Heart Rhythm, 2011, 8, 429-436.	0.3	43
65	Mechanistic insights into the benefits of multisite pacing in cardiac resynchronization therapy: The importance of electrical substrate and rate of left ventricular activation. Heart Rhythm, 2015, 12, 2449-2457.	0.3	43
66	The definition of left bundle branch block influences the response to cardiac resynchronization therapy. International Journal of Cardiology, 2018, 269, 165-169.	0.8	43
67	Comparison of a non-invasive arterial pulse contour technique and echo Doppler aorta velocity-time integral on stroke volume changes in optimization of cardiac resynchronization therapy. Europace, 2011, 13, 87-95.	0.7	42
68	Electrical and Mechanical Ventricular Activation During Left Bundle Branch Block and Resynchronization. Journal of Cardiovascular Translational Research, 2012, 5, 117-126.	1.1	41
69	Different regions of latest electrical activation during left bundleâ€branch block and right ventricular pacing in cardiac resynchronization therapy patients determined by coronary venous electroâ€anatomic mapping. European Journal of Heart Failure, 2014, 16, 1214-1222.	2.9	41
70	Influence of left ventricular lead position relative to scar location on response to cardiac resynchronization therapy: a model study. Europace, 2014, 16, iv62-iv68.	0.7	40
71	Pathobiology of cardiac dyssynchrony and resynchronization therapy. Europace, 2018, 20, 1898-1909.	0.7	39
72	Comparing Ventricular Synchrony in Left Bundle Branch and Left Ventricular Septal Pacing in Pacemaker Patients. Journal of Clinical Medicine, 2021, 10, 822.	1.0	39

#	Article	IF	CITATIONS
73	The value of the 12-lead ECG for evaluation and optimization of cardiac resynchronization therapy in daily clinical practice. Journal of Electrocardiology, 2014, 47, 202-211.	0.4	36
74	Tâ€Wave Area Predicts Response to Cardiac Resynchronization Therapy in Patients with Left Bundle Branch Block. Journal of Cardiovascular Electrophysiology, 2015, 26, 176-183.	0.8	36
75	Relative Impact of Right Ventricular Electromechanical Dyssynchrony Versus Pulmonary Regurgitation on Right Ventricular Dysfunction and Exercise Intolerance in Patients After Repair of Tetralogy of Fallot. Journal of the American Heart Association, 2019, 8, e010903.	1.6	36
76	Interplay of Electrical Wavefronts as Determinant of the Response to Cardiac Resynchronization Therapy in Dyssynchronous Canine Hearts. Circulation: Arrhythmia and Electrophysiology, 2013, 6, 924-931.	2.1	35
77	Cardiac resynchronisation therapy optimisation strategies: Systematic classification, detailed analysis, minimum standards and a roadmap for development and testing. International Journal of Cardiology, 2013, 170, 118-131.	0.8	34
78	Discrepancies between myocardial blood flow and fiber shortening in the ischemic border zone as assessed with video mapping of epicardial deformation. Pflugers Archiv European Journal of Physiology, 1989, 415, 220-229.	1.3	33
79	Stretch-induced hypertrophy of isolated adult rabbit cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H780-H787.	1.5	33
80	The effect of reduced intercellular coupling on electrocardiographic signs of left ventricular hypertrophy. Journal of Electrocardiology, 2011, 44, 571-576.	0.4	33
81	An in-silico analysis of the effect of heart position and orientation on the ECG morphology and vectorcardiogram parameters in patients with heart failure and intraventricular conduction defects. Journal of Electrocardiology, 2015, 48, 617-625.	0.4	33
82	Is echocardiographic assessment of dyssynchrony useful to select candidates for cardiac resynchronization therapy?. Circulation: Cardiovascular Imaging, 2008, 1, 70-78.	1.3	32
83	Evaluation of a Rapid Anisotropic Model for ECG Simulation. Frontiers in Physiology, 2017, 8, 265.	1.3	32
84	Similarities and differences between electrocardiogram signs of left bundle-branch block and left-ventricular uncoupling. Europace, 2012, 14, v33-v39.	0.7	30
85	Septal flash and septal rebound stretch have different underlying mechanisms. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H394-H403.	1.5	28
86	Relationship between vectorcardiographic QRSarea, myocardial scar quantification, and response to cardiac resynchronization therapy. Journal of Electrocardiology, 2018, 51, 457-463.	0.4	28
87	Reconstruction of three-dimensional biventricular activation based on the 12-lead electrocardiogram via patient-specific modelling. Europace, 2021, 23, 640-647.	0.7	28
88	Atrioventricular dromotropathy: evidence for a distinctive entity in heart failure with prolonged PR interval?. Europace, 2018, 20, 1067-1077.	0.7	27
89	Electrical Substrates Driving Response to Cardiac Resynchronization Therapy. Circulation: Arrhythmia and Electrophysiology, 2018, 11, e005647.	2.1	27
90	Novel ultraâ€highâ€frequency electrocardiogram tool for the description of the ventricular depolarization pattern before and during cardiac resynchronization. Journal of Cardiovascular Electrophysiology, 2020, 31, 300-307.	0.8	27

#	Article	IF	CITATIONS
91	Repolarization changes in patients with heart failure receiving cardiac resynchronization therapy—signs of cardiac memory. Journal of Electrocardiology, 2011, 44, 590-598.	0.4	26
92	Why QRS Duration Should Be Replaced by Better Measures of Electrical Activation to Improve Patient Selection for Cardiac Resynchronization Therapy. Journal of Cardiovascular Translational Research, 2016, 9, 257-265.	1.1	26
93	Sequential His bundle and left ventricular pacing for cardiac resynchronization. Journal of Cardiovascular Electrophysiology, 2020, 31, 2448-2454.	0.8	26
94	A computationally efficient physiologically comprehensive 3D–0D closed-loop model of the heart and circulation. Computer Methods in Applied Mechanics and Engineering, 2021, 386, 114092.	3.4	26
95	Cardiac Resynchronization Therapy - Refocus on the Electrical Substrate Circulation Journal, 2011, 75, 1297-1304.	0.7	25
96	The "Missing―Link Between Acute Hemodynamic Effect and Clinical Response. Journal of Cardiovascular Translational Research, 2012, 5, 188-195.	1.1	25
97	Longitudinal Strain. JACC: Cardiovascular Imaging, 2015, 8, 1360-1363.	2.3	25
98	Echocardiographic Prediction of Cardiac Resynchronization Therapy Response Requires Analysis of Both Mechanical Dyssynchrony and Right Ventricular Function: A Combined Analysis ofÂPatient Data and Computer Simulations. Journal of the American Society of Echocardiography, 2017, 30, 1012-1020.e2.	1.2	25
99	In vivo electromechanical assessment of heart failure patients with prolonged QRS duration. Heart Rhythm, 2015, 12, 1259-1267.	0.3	24
100	Response to cardiac resynchronization therapy is determined by intrinsic electrical substrate rather than by its modification. International Journal of Cardiology, 2018, 270, 143-148.	0.8	24
101	Left Ventricular Myocardial Septal Pacing in Close Proximity to LBB Does Not Prolong the Duration of the Left Ventricular Lateral Wall Depolarization Compared to LBB Pacing. Frontiers in Cardiovascular Medicine, 2021, 8, 787414.	1.1	23
102	Modeling Cardiac Electromechanics and Mechanoelectrical Coupling in Dyssynchronous and Failing Hearts. Journal of Cardiovascular Translational Research, 2012, 5, 159-169.	1.1	22
103	A Possible Role for Pacing the LeftÂVentricular Septum in CardiacÂResynchronization Therapy. JACC: Clinical Electrophysiology, 2016, 2, 413-422.	1.3	22
104	Can We Use the Intrinsic Left Ventricular Delay (QLV) to Optimize the Pacing Configuration for Cardiac Resynchronization Therapy With a Quadripolar Left Ventricular Lead?. Circulation: Arrhythmia and Electrophysiology, 2018, 11, e005912.	2.1	22
105	Vectorcardiography as a Tool for Easy Optimization of Cardiac Resynchronization Therapy in Canine Left Bundle Branch Block Hearts. Circulation: Arrhythmia and Electrophysiology, 2012, 5, 544-552.	2.1	21
106	The synthesized vectorcardiogram resembles the measured vectorcardiogram in patients with dyssynchronous heart failure. Journal of Electrocardiology, 2015, 48, 586-592.	0.4	21
107	The Left and Right Ventricles Respond Differently to Variation of Pacing Delays in Cardiac Resynchronization Therapy: A Combined Experimental- Computational Approach. Frontiers in Physiology, 2019, 10, 17.	1.3	21
108	Determinants of biventricular cardiac function: a mathematical model study on geometry and myofiber orientation. Biomechanics and Modeling in Mechanobiology, 2017, 16, 721-729.	1.4	20

Frits W Prinzen

#	Article	IF	CITATIONS
109	Reduction in the QRS area after cardiac resynchronization therapy is associated with survival and echocardiographic response. Journal of Cardiovascular Electrophysiology, 2021, 32, 813-822.	0.8	20
110	Combining computer modelling and cardiac imaging to understand right ventricular pump function. Cardiovascular Research, 2017, 113, 1486-1498.	1.8	19
111	Stretch-Induced Upregulation of Connective Tissue Growth Factor in Rabbit Cardiomyocytes. Journal of Cardiovascular Translational Research, 2013, 6, 861-869.	1.1	18
112	Vectorcardiography for Optimization of Stimulation Intervals in Cardiac Resynchronization Therapy. Journal of Cardiovascular Translational Research, 2015, 8, 128-137.	1.1	18
113	Enhancing Response in the Cardiac Resynchronization Therapy Patient. JACC: Clinical Electrophysiology, 2017, 3, 1203-1219.	1.3	18
114	Pressure-Volume Loop Analysis of Multipoint Pacing With a Quadripolar LeftÂVentricular Lead in Cardiac Resynchronization Therapy. JACC: Clinical Electrophysiology, 2018, 4, 881-889.	1.3	18
115	Novel bradycardia pacing strategies. Heart, 2020, 106, 1883-1889.	1.2	18
116	Mechano-electrical coupling as framework for understanding functional remodeling during LBBB and CRT. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1644-H1659.	1.5	17
117	Clinical Pacing Post-Conditioning During Revascularization After AMI. JACC: Cardiovascular Imaging, 2014, 7, 620-626.	2.3	17
118	Local microRNAâ€133a downregulation is associated with hypertrophy in the dyssynchronous heart. ESC Heart Failure, 2017, 4, 241-251.	1.4	17
119	Optimizing lead placement for pacing in dyssynchronous heart failure: The patient in the lead. Heart Rhythm, 2021, 18, 1024-1032.	0.3	17
120	Integration of cardiac magnetic resonance imaging, electrocardiographic imaging, and coronary venous computed tomography angiography for guidance of left ventricular lead positioning. Europace, 2019, 21, 626-635.	0.7	16
121	Evaluating Electrocardiography-Based Identification of Cardiac Resynchronization Therapy Responders Beyond Current LeftÂBundle Branch Block Definitions. JACC: Clinical Electrophysiology, 2020, 6, 193-203.	1.3	16
122	Ventricular activation pattern assessment during right ventricular pacing: Ultraâ€highâ€frequency ECG study. Journal of Cardiovascular Electrophysiology, 2021, 32, 1385-1394.	0.8	16
123	Evaluation of the use of unipolar voltage amplitudes for detection of myocardial scar assessed by cardiac magnetic resonance imaging in heart failure patients. PLoS ONE, 2017, 12, e0180637.	1.1	16
124	Electrical management of heart failure: from pathophysiology to treatment. European Heart Journal, 2022, 43, 1917-1927.	1.0	16
125	Mapping the sequence of contraction of the canine left ventricle. Pflugers Archiv European Journal of Physiology, 1991, 419, 529-533.	1.3	15
126	Strategies to Improve Selection ofÂPatients Without Typical LeftÂBundleÂBranch Block for CardiacÂResynchronization Therapy. JACC: Clinical Electrophysiology, 2020, 6, 129-142.	1.3	15

#	Article	IF	CITATIONS
127	Hemodynamic Optimization in CardiacÂResynchronization Therapy. JACC: Clinical Electrophysiology, 2019, 5, 1013-1025.	1.3	14
128	The value of septal rebound stretch analysis for the prediction of volumetric response to cardiac resynchronization therapy. European Heart Journal Cardiovascular Imaging, 2021, 22, 37-45.	0.5	14
129	Opportunities and challenges of current electrophysiology research: a plea to establish 'translational electrophysiology' curricula. Europace, 2015, 17, 825-833.	0.7	13
130	Left univentricular pacing for cardiac resynchronization therapy. Europace, 2017, 19, euw179.	0.7	13
131	Toward Sex-Specific Guidelines for Cardiac Resynchronization Therapy?. Journal of Cardiovascular Translational Research, 2016, 9, 12-22.	1.1	13
132	Regional Left Ventricular Electrical Activation and Peak Contraction Are Closely Related in Candidates for CardiacÂResynchronization Therapy. JACC: Clinical Electrophysiology, 2017, 3, 854-862.	1.3	12
133	The influence of scar on the spatio-temporal relationship between electrical and mechanical activation in heart failure patients. Europace, 2020, 22, 777-786.	0.7	12
134	Pacing therapy for atrioventricular dromotropathy: a combined computational–experimental–clinical study. Europace, 2022, 24, 784-795.	0.7	12
135	Evaluating multisite pacing strategies in cardiac resynchronization therapy in the preclinical setting. Heart Rhythm O2, 2020, 1, 111-119.	0.6	12
136	T-wave area as biomarker of clinical response to cardiac resynchronization therapy. Europace, 2016, 18, 1077-1085.	0.7	11
137	Improved acute haemodynamic response to cardiac resynchronization therapy using multipoint pacing cannot solely be explained by better resynchronization. Journal of Electrocardiology, 2018, 51, S61-S66.	0.4	11
138	Dynamic atrioventricular delay programming improves ventricular electrical synchronization as evaluated by 3D vectorcardiography. Journal of Electrocardiology, 2020, 58, 1-6.	0.4	11
139	Linking cross-bridge cycling kinetics to response to cardiac resynchronization therapy: a multiscale modelling study. Europace, 2018, 20, iii87-iii93.	0.7	10
140	Association between heart failure aetiology and magnitude of echocardiographic remodelling and outcome of cardiac resynchronization therapy. ESC Heart Failure, 2020, 7, 645-653.	1.4	10
141	Acute recoordination rather than functional hemodynamic improvement determines reverse remodelling by cardiac resynchronisation therapy. International Journal of Cardiovascular Imaging, 2021, 37, 1903-1911.	0.7	10
142	Piezo1 Mechanosensitive Ion Channel Mediates Stretch-Induced Nppb Expression in Adult Rat Cardiac Fibroblasts. Cells, 2021, 10, 1745.	1.8	10
143	Fully automated QRS area measurement for predicting response to cardiac resynchronization therapy. Journal of Electrocardiology, 2020, 63, 159-163.	0.4	9
144	Differentiating the effects of β-adrenergic stimulation and stretch on calcium and force dynamics using a novel electromechanical cardiomyocyte model. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H519-H530.	1.5	9

#	Article	IF	CITATIONS
145	Heart Size Corrected Electrical Dyssynchrony and Its Impact on Sex-Specific Response to Cardiac Resynchronization Therapy. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e008452.	2.1	9
146	Hyperoxia and local organ blood flow in the developing chick embryo. Journal of Physiology, 1999, 515, 243-248.	1.3	8
147	Mechano-electrical feedback explains T-wave morphology and optimizes cardiac pump function: Insight from a multi-scale model. Progress in Biophysics and Molecular Biology, 2012, 110, 359-371.	1.4	8
148	Electrophysiological and haemodynamic effects of vernakalant and flecainide in dyssynchronous canine hearts. Europace, 2014, 16, 1249-1256.	0.7	8
149	Comparison of septal strain patterns in dyssynchronous heart failure between speckle tracking echocardiography vendor systems. Journal of Electrocardiology, 2015, 48, 609-616.	0.4	8
150	Validation of myocardial perfusion quantification by dynamic CT in an ex-vivo porcine heart model. International Journal of Cardiovascular Imaging, 2017, 33, 1821-1830.	0.7	8
151	Atrioventricular optimization in cardiac resynchronization therapy with quadripolar leads: should we optimize every pacing configuration including multi-point pacing?. Europace, 2019, 21, e11-e19.	0.7	8
152	Echocardiographic Assessment of Left Bundle Branch–Related Strain Dyssynchrony: A Comparison With Tagged MRI. Ultrasound in Medicine and Biology, 2019, 45, 2063-2074.	0.7	8
153	Second heart sound splitting as an indicator of interventricular mechanical dyssynchrony using a novel splitting detection algorithm. Physiological Reports, 2021, 9, e14687.	0.7	8
154	Electrical remodelling in patients with iatrogenic left bundle branch block. Europace, 2016, 18, iv44-iv52.	0.7	7
155	Prediction of optimal cardiac resynchronization by vectors extracted from electrograms in dyssynchronous canine hearts. Journal of Cardiovascular Electrophysiology, 2017, 28, 944-951.	0.8	7
156	Development of Strategies for Guiding Cardiac Resynchronization Therapy. Heart Failure Clinics, 2008, 4, 333-345.	1.0	6
157	Preoperative Sildenafil administration in children undergoing cardiac surgery: a randomized controlled preconditioning study. European Journal of Cardio-thoracic Surgery, 2016, 49, 1403-1410.	0.6	6
158	Investigating myocardial work as a CRT response predictor is not a waste of work. European Heart Journal, 2020, 41, 3824-3826.	1.0	6
159	3-Dimensional ventricular electrical activation pattern assessed from a novel high-frequency electrocardiographic imaging technique: principles and clinical importance. Scientific Reports, 2021, 11, 11469.	1.6	6
160	To what extent are perfusion defects seen by myocardial perfusion SPECT in patients with left bundle branch block related to myocardial infarction, ECG characteristics, and myocardial wall motion?. Journal of Nuclear Cardiology, 2021, 28, 2910-2922.	1.4	6
161	Does mechanical dyssynchrony in addition to QRS area ensure sustained response to cardiac resynchronization therapy?. European Heart Journal Cardiovascular Imaging, 2022, 23, 1628-1635.	0.5	6
162	Impact of paced left ventricular dyssynchrony on left ventricular reverse remodeling after cardiac resynchronization therapy. Journal of Cardiovascular Electrophysiology, 2020, 31, 494-502.	0.8	5

#	Article	IF	CITATIONS
163	Exploring the cause of conduction delays in patients with repaired Tetralogy of Fallot. Europace, 2021, 23, i105-i112.	0.7	5
164	Left Ventricular Lead Placement Guided by Reduction in QRS Area. Journal of Clinical Medicine, 2021, 10, 5935.	1.0	5
165	Physiology of Cardiac Pacing and Resynchronization. , 2017, , 213-248.		4
166	The relation between local repolarization and T-wave morphology in heart failure patients. International Journal of Cardiology, 2017, 241, 270-276.	0.8	4
167	Too old to shock?. International Journal of Cardiology, 2018, 263, 65-66.	0.8	4
168	Does the Right Go Wrong During CardiacÂResynchronization Therapy?. JACC: Cardiovascular Imaging, 2020, 13, 1485-1488.	2.3	4
169	Assessment of left ventricular mechanical dyssynchrony in left bundle branch block canine model: Comparison between cine and tagged MRI. Journal of Magnetic Resonance Imaging, 2016, 44, 956-963.	1.9	3
170	Reservations about the Selvester QRS score in left bundle branch block — Experience in patients with transcatheter aortic valve implantation. Journal of Electrocardiology, 2017, 50, 261-267.	0.4	3
171	Intermittent pacing therapy favorably modulates infarct remodeling. Basic Research in Cardiology, 2017, 112, 28.	2.5	3
172	Tailoring device settings in cardiac resynchronization therapy using electrograms from pacing electrodes. Europace, 2018, 20, 1146-1153.	0.7	3
173	Integrated Assessment of Left Ventricular Electrical Activation and Myocardial Strain Mapping in Heart Failure Patients. JACC: Clinical Electrophysiology, 2018, 4, 138-146.	1.3	3
174	Left atrial reverse remodeling predicts long-term survival after cardiac resynchronization therapy. Journal of Echocardiography, 2022, 20, 115-123.	0.4	3
175	Vectorcardiographic QRS area as a predictor of response to cardiac resynchronization therapy Journal of Geriatric Cardiology, 2022, 19, 9-20.	0.2	3
176	Pathophysiology of dyssynchrony: of squirrels and broken bones. Netherlands Heart Journal, 2016, 24, 4-10.	0.3	2
177	Exploring the Electrophysiologic and Hemodynamic Effects of Cardiac Resynchronization Therapy. Heart Failure Clinics, 2017, 13, 43-52.	1.0	2
178	New Conduction Abnormalities After Transcatheter Aortic Valve Replacement. JACC: Cardiovascular Interventions, 2019, 12, 62-64.	1.1	2
179	LBBB and High Afterload. JACC: Cardiovascular Imaging, 2019, 12, 978-980.	2.3	2
180	Should we still monitor QTc duration in frail older patients on low-dose haloperidol? A prospective observational cohort study. Age and Ageing, 2020, 49, 829-836.	0.7	2

#	Article	IF	CITATIONS
181	Occurrence and Persistency of Conduction Disturbances during Transcatheter Aortic Valve Implantation. Medicina (Lithuania), 2021, 57, 695.	0.8	2
182	Hemodynamics-driven mathematical model of first and second heart sound generation. PLoS Computational Biology, 2021, 17, e1009361.	1.5	2
183	Synchronization of repolarization after cardiac resynchronization therapy: a combined clinical and modeling study. Journal of Cardiovascular Electrophysiology, 0, , .	0.8	2
184	Histopathological validation of semi-automated myocardial scar quantification techniques for dark-blood late gadolinium enhancement magnetic resonance imaging. European Heart Journal Cardiovascular Imaging, 2023, 24, 364-372.	0.5	2
185	Exploring the Electrophysiologic and Hemodynamic Effects of Cardiac Resynchronization Therapy. Cardiac Electrophysiology Clinics, 2015, 7, 599-608.	0.7	1
186	Mapping-guided characterization of mechanical and electrical activation patterns in patients with normal systolic function using a sensor-based tracking technology. Europace, 2016, 19, euw261.	0.7	1
187	Characterizing left ventricular mechanical and electrical activation in patients with normal and impaired systolic function using a non-fluoroscopic cardiovascular navigation system. Journal of Interventional Cardiac Electrophysiology, 2018, 51, 205-214.	0.6	1
188	Effective Distance between Aortic Valve and Conduction System Is an Independent Predictor of Persistent Left Bundle Branch Block during Transcatheter Aortic Valve Implantation. Medicina (Lithuania), 2021, 57, 476.	0.8	1
189	Does heart-type fatty acid-binding protein predict clinical outcomes after pediatric cardiac surgery?. Annals of Pediatric Cardiology, 2017, 10, 245.	0.2	1
190	Electro-energetics of Biventricular, Septal and Conduction System Pacing. Arrhythmia and Electrophysiology Review, 2021, 10, 250-257.	1.3	1
191	16-68: Right ventricular dysfunction complicates prediction of response to cardiac resynchronization therapy by mechanical dyssynchrony parameters: combined clinical-modeling approach. Europace, 2016, 18, i17-i17.	0.7	Ο
192	Left ventricular lead positioning in cardiac resynchronization therapy: Mission accomplished?. Heart Rhythm, 2017, 14, 1373-1374.	0.3	0
193	Response to Letter From Vereckei Regarding, "QRS Area Is a Strong Determinant of Outcome in Cardiac Resynchronization Therapy― Circulation: Arrhythmia and Electrophysiology, 2019, 12, e007297.	2.1	0
194	Do we need to pace the bundle? Editorial comment on: Nonselective versus selective His bundle pacing: An acute intrapatient speckle tracking strain echocardiographic study by Bednarek et al. Journal of Cardiovascular Electrophysiology, 2021, 32, 126-128.	0.8	0
195	Cover Image, Volume 32, Issue 5. Journal of Cardiovascular Electrophysiology, 2021, 32, ii.	0.8	0
196	Reply to the Editor — Regarding Multisite pacing strategies: Solutions looking for a problem?. Heart Rhythm O2, 2020, 1, 315-316.	0.6	0
197	Comparison of UHF-ECG with Other Noninvasive Electrophysiological Mapping Tools for Assessing Ventricular Dyssynchrony. , 2021, , .		0
198	Ultra-High-Frequency Electrocardiography. , 2021, , .		0

Ultra-High-Frequency Electrocardiography. , 2021, , . 198

#	Article	IF	CITATIONS
199	Physiological versus non-physiological cardiac pacing as assessed by Ultra-high-frequency electrocardiography. , 2021, , .		ο
200	Atrioventricular dromotropathy: an important substrate for complete resynchronization therapy—Authors' reply. Europace, 2022, , .	0.7	0