Dori C Woods

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1877269/publications.pdf Version: 2024-02-01

DORI C WOODS

#	Article	IF	CITATIONS
1	Workflow Optimization for Identification of Female Germline or Oogonial Stem Cells in Human Ovarian Cortex Using Single-Cell RNA Sequence Analysis. Stem Cells, 2022, 40, 523-536.	1.4	11
2	3GOLD: optimized Levenshtein distance for clustering third-generation sequencing data. BMC Bioinformatics, 2022, 23, 95.	1.2	4
3	A FoxA2+ long-term stem cell population is necessary for growth plate cartilage regeneration after injury. Nature Communications, 2022, 13, 2515.	5.8	22
4	Dynamics of the most common pathogenic mtDNA variant m.3243A > G demonstrate frequency-dependency in blood and positive selection in the germline. Human Molecular Genetics, 2022, 31, 4075-4086.	1.4	5
5	Biomechanical Strain Promotes the Differentiation of Murine Oogonial Stem Cells. Stem Cells and Development, 2021, 30, 749-757.	1.1	5
6	Reproductive medicine at the crossroads of stem cell biology and big-data. Fertility and Sterility, 2021, 116, 686-687.	0.5	2
7	Role of Granulosa Cells in the Aging Ovarian Landscape: A Focus on Mitochondrial and Metabolic Function. Frontiers in Physiology, 2021, 12, 800739.	1.3	11
8	Inherent mitochondrial activity influences specification of the germ line in pluripotent stem cells. Heliyon, 2020, 6, e03651.	1.4	4
9	The obligate need for accuracy in reporting preclinical studies relevant to clinical trials: autologous germline mitochondrial supplementation for assisted human reproduction as a case study. Therapeutic Advances in Reproductive Health, 2020, 14, 263349412091735.	1.3	3
10	Estrogen regulation of germline stem cell differentiation as a mechanism contributing to female reproductive aging. Aging, 2020, 12, 7313-7333.	1.4	14
11	LUCS: a high-resolution nucleic acid sequencing tool for accurate long-read analysis of individual DNA molecules. Aging, 2020, 12, 7603-7613.	1.4	2
12	A nanoscale, multi-parametric flow cytometry-based platform to study mitochondrial heterogeneity and mitochondrial DNA dynamics. Communications Biology, 2019, 2, 258.	2.0	32
13	Quasi-Mendelian paternal inheritance of mitochondrial DNA: A notorious artifact, or anticipated behavior?. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14797-14798.	3.3	17
14	Implications and Current Limitations of Oogenesis from Female Germline or Oogonial Stem Cells in Adult Mammalian Ovaries. Cells, 2019, 8, 93.	1.8	65
15	Female Fertility Preservation through Stem Cell-based Ovarian Tissue Reconstitution In Vitro and Ovarian Regeneration In Vivo. Clinical Medicine Insights Reproductive Health, 2019, 13, 117955811984800.	3.9	26
16	Extracellular matrix signaling activates differentiation of adult ovary-derived oogonial stem cells inÂa species-specific manner. Fertility and Sterility, 2019, 111, 794-805.	0.5	27
17	Dynamics of WNT signaling components in the human ovary from development to adulthood. Histochemistry and Cell Biology, 2019, 151, 115-123.	0.8	16
18	Quantitative Proteomic Profiling of the Human Ovary from Early to Mid-Gestation Reveals Protein Expression Dynamics of Oogenesis and Folliculogenesis. Stem Cells and Development, 2018, 27, 723-735.	1.1	18

Dori C Woods

#	Article	IF	CITATIONS
19	Calorie restriction does not influence oocyte quality in oocytes from POLG mitochondrial mutator mice. PLoS ONE, 2018, 13, e0204373.	1.1	2
20	Mitochondrial membrane depolarization enhances TRAIL-induced cell death in adult human granulosa tumor cells, KGN, through inhibition of BIRC5. Journal of Ovarian Research, 2018, 11, 89.	1.3	12
21	A method for freeze-fracture and scanning electron microscopy of isolated mitochondria. MethodsX, 2018, 5, 593-598.	0.7	1
22	Influence of Maternal Aging on Mitochondrial Heterogeneity, Inheritance, and Function in Oocytes and Preimplantation Embryos. Genes, 2018, 9, 265.	1.0	40
23	Impact of exercise on oocyte quality in the POLG mitochondrial DNA mutator mouse. Reproduction, 2018, 156, 185-194.	1.1	10
24	New insights on mitochondrial heterogeneity observed in prepared mitochondrial samples following a method for freeze-fracture and scanning electron microscopy. Micron, 2017, 101, 25-31.	1.1	7
25	Genetic studies in mice directly link oocytes produced during adulthood to ovarian function and natural fertility. Scientific Reports, 2017, 7, 10011.	1.6	39
26	Ovarian regeneration: The potential for stem cell contribution in the postnatal ovary to sustained endocrine function. Molecular and Cellular Endocrinology, 2017, 445, 74-84.	1.6	53
27	Mitochondrial Heterogeneity: Evaluating Mitochondrial Subpopulation Dynamics in Stem Cells. Stem Cells International, 2017, 2017, 1-7.	1.2	40
28	Amelioration of premature aging in mtDNA mutator mouse by exercise: the interplay of oxidative stress, PGC-1α, p53, and DNA damage. A hypothesis. Current Opinion in Genetics and Development, 2016, 38, 127-132.	1.5	40
29	Isolation of Mammalian Oogonial Stem Cells by Antibody-Based Fluorescence-Activated Cell Sorting. Methods in Molecular Biology, 2016, 1457, 253-268.	0.4	16
30	Autologous Germline Mitochondrial Energy Transfer (AUGMENT) in Human Assisted Reproduction. Seminars in Reproductive Medicine, 2015, 33, 410-421.	0.5	98
31	A role for retinoids in human oocyte fertilization: regulation of connexin 43 by retinoic acid in cumulus granulosa cells. Molecular Human Reproduction, 2015, 21, 527-534.	1.3	24
32	Reply to Adult human and mouse ovaries lack DDX4-expressing functional oogonial stem cells. Nature Medicine, 2015, 21, 1118-1121.	15.2	26
33	Bone morphogenetic protein 4 promotes mammalian oogonial stem cell differentiation via Smad1/5/8 signaling. Fertility and Sterility, 2013, 100, 1468-1475.e2.	0.5	63
34	Comparative gene expression profiling of adult mouse ovary-derived oogonial stem cells supports a distinct cellular identity. Fertility and Sterility, 2013, 100, 1451-1458.e2.	0.5	39
35	Purification of Oogonial Stem Cells From Adult Mouse and Human Ovaries: An Assessment of the Literature and a View Toward the Future. Reproductive Sciences, 2013, 20, 7-15.	1.1	74
36	Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries. Nature Protocols, 2013, 8, 966-988.	5.5	130

Dori C Woods

#	Article	IF	CITATIONS
37	An Evolutionary Perspective on Adult Female Germline Stem Cell Function from Flies to Humans. Seminars in Reproductive Medicine, 2013, 31, 024-032.	0.5	33
38	Embryonic Stem Cell—Derived Granulosa Cells Participate in Ovarian Follicle Formation In Vitro and In Vivo. Reproductive Sciences, 2013, 20, 524-535.	1.1	29
39	Oocyte Family Trees: Old Branches or New Stems?. PLoS Genetics, 2012, 8, e1002848.	1.5	23
40	The next (re)generation of ovarian biology and fertility in women: is current science tomorrow's practice?. Fertility and Sterility, 2012, 98, 3-10.	0.5	74
41	Prolonging the female reproductive lifespan and improving egg quality with dietary omegaâ \in 3 fatty acids. Aging Cell, 2012, 11, 1046-1054.	3.0	86
42	Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nature Medicine, 2012, 18, 413-421.	15.2	624
43	TLR4 activates NF-Î [®] B in human ovarian granulosa tumor cells. Biochemical and Biophysical Research Communications, 2011, 409, 675-680.	1.0	43
44	A transgenic zebrafish model of targeted oocyte ablation and de novo oogenesis. Developmental Dynamics, 2011, 240, 1929-1937.	0.8	25
45	Dynamics of avian ovarian follicle development: Cellular mechanisms of granulosa cell differentiation. General and Comparative Endocrinology, 2009, 163, 12-17.	0.8	176
46	Cisplatin-mediated sensitivity to TRAIL-induced cell death in human granulosa tumor cells. Gynecologic Oncology, 2008, 108, 632-640.	0.6	29
47	Inhibition of proteasome activity sensitizes human granulosa tumor cells to TRAIL-induced cell death. Cancer Letters, 2008, 260, 20-27.	3.2	17
48	Tumor necrosis factor-related apoptosis inducing ligand expression and activity in hen granulosa cells. Reproduction, 2007, 133, 609-616.	1.1	21
49	Regulation of Follicle-Stimulating Hormone-Receptor Messenger RNA in Hen Granulosa Cells Relative to Follicle Selection 1. Biology of Reproduction, 2005, 72, 643-650.	1.2	138
50	Opposing actions of TGFÎ ² and MAP kinase signaling in undifferentiated hen granulosa cells. Biochemical and Biophysical Research Communications, 2005, 336, 450-457.	1.0	31