
## **Derek Pletcher**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1877125/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Flow Electrolysis Cells for the Synthetic Organic Chemistry Laboratory. Chemical Reviews, 2018, 118, 4573-4591.                                                                           | 47.7 | 355       |
| 2  | Electrodeposited lead dioxide coatings. Chemical Society Reviews, 2011, 40, 3879.                                                                                                         | 38.1 | 310       |
| 3  | Electrode materials for electrosynthesis. Chemical Reviews, 1990, 90, 837-865.                                                                                                            | 47.7 | 232       |
| 4  | Electrocatalysis: present and future. Journal of Applied Electrochemistry, 1984, 14, 403-415.                                                                                             | 2.9  | 188       |
| 5  | A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(ii). Physical<br>Chemistry Chemical Physics, 2004, 6, 1773.                                           | 2.8  | 179       |
| 6  | The study of aluminium anodes for high power density Al/air batteries with brine electrolytes. Journal of Power Sources, 2008, 178, 445-455.                                              | 7.8  | 174       |
| 7  | A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(ii). Physical<br>Chemistry Chemical Physics, 2004, 6, 1779.                                           | 2.8  | 162       |
| 8  | A novel flow battery—A lead acid battery based on an electrolyte with soluble lead(II). Journal of<br>Power Sources, 2005, 149, 96-102.                                                   | 7.8  | 120       |
| 9  | A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II). Electrochimica<br>Acta, 2009, 54, 4688-4695.                                                     | 5.2  | 118       |
| 10 | A novel flow battery—A lead-acid battery based on an electrolyte with soluble lead(II). Journal of<br>Power Sources, 2008, 180, 630-634.                                                  | 7.8  | 106       |
| 11 | A novel flow battery—A lead acid battery based on an electrolyte with soluble lead(II). Journal of<br>Power Sources, 2005, 149, 103-111.                                                  | 7.8  | 105       |
| 12 | A novel flow battery—A lead-acid battery based on an electrolyte with soluble lead(II). Journal of<br>Power Sources, 2008, 180, 621-629.                                                  | 7.8  | 102       |
| 13 | The cathodic reduction of carbon dioxide—What can it realistically achieve? A mini review.<br>Electrochemistry Communications, 2015, 61, 97-101.                                          | 4.7  | 91        |
| 14 | The Oxidation of Alcohols at a Nickel Anode in Alkaline tâ€Butanol/Water Mixtures. Journal of the<br>Electrochemical Society, 1977, 124, 203-206.                                         | 2.9  | 81        |
| 15 | A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II) Part VIII. The cycling of a 10cmĀ—10cm flow cell. Journal of Power Sources, 2010, 195, 1731-1738. | 7.8  | 79        |
| 16 | TEMPOâ€Mediated Electrooxidation of Primary and Secondary Alcohols in a Microfluidic Electrolytic Cell. ChemSusChem, 2012, 5, 326-331.                                                    | 6.8  | 76        |
| 17 | <i>N</i> -Heterocyclic Carbene-Mediated Microfluidic Oxidative Electrosynthesis of Amides from<br>Aldehydes. Organic Letters, 2016, 18, 1198-1201.                                        | 4.6  | 76        |
| 18 | A Microflow Electrolysis Cell for Laboratory Synthesis on the Multigram Scale. Organic Process<br>Research and Development, 2015, 19, 1424-1427.                                          | 2.7  | 74        |

DEREK PLETCHER

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II). Part IX:<br>Electrode and electrolyte conditioning with hydrogen peroxide. Journal of Power Sources, 2010, 195,<br>2975-2978. | 7.8 | 70        |
| 20 | The influence of support and particle size on the platinum catalysed oxygen reduction reaction.<br>Physical Chemistry Chemical Physics, 2009, 11, 9141.                                                                | 2.8 | 64        |
| 21 | Platinum catalysed nanoporous titanium dioxide electrodes in H2SO4 solutions. Electrochemistry Communications, 2001, 3, 395-399.                                                                                       | 4.7 | 59        |
| 22 | CO Oxidation on Gold in Acidic Environments:  Particle Size and Substrate Effects. Journal of Physical Chemistry C, 2007, 111, 17044-17051.                                                                            | 3.1 | 59        |
| 23 | Mesoporous palladium—the surface electrochemistry of palladium in aqueous sodium hydroxide and the cathodic reduction of nitrite. Physical Chemistry Chemical Physics, 2005, 7, 3545.                                  | 2.8 | 55        |
| 24 | Understanding the Performance of a Microfluidic Electrolysis Cell for Routine Organic Electrosynthesis. Journal of Flow Chemistry, 2015, 5, 31-36.                                                                     | 1.9 | 54        |
| 25 | A microelectrode study of the catalysis of alkyl halide reduction by Co(II)(salen). Journal of<br>Electroanalytical Chemistry, 1999, 464, 168-175.                                                                     | 3.8 | 52        |
| 26 | N-Heterocyclic Carbene-Mediated Oxidative Electrosynthesis of Esters in a Microflow Cell. Organic Letters, 2015, 17, 3290-3293.                                                                                        | 4.6 | 52        |
| 27 | Organic electrosynthesis $\hat{a} \in A$ road to greater application. A mini review. Electrochemistry Communications, 2018, 88, 1-4.                                                                                   | 4.7 | 52        |
| 28 | The electrodeposition and electrocatalytic properties of copper–palladium alloys. Journal of Electroanalytical Chemistry, 2008, 614, 24-30.                                                                            | 3.8 | 51        |
| 29 | The fabrication of lead dioxide layers on a titanium substrate. Electrochimica Acta, 2006, 52, 786-793.                                                                                                                | 5.2 | 50        |
| 30 | Electrosynthesis in extended channel length microfluidic electrolysis cells. Journal of Flow Chemistry, 2016, 6, 191-197.                                                                                              | 1.9 | 45        |
| 31 | The influence of Pt particle size on the surface oxidation of titania supported platinum. Physical Chemistry Chemical Physics, 2009, 11, 1564.                                                                         | 2.8 | 44        |
| 32 | A simple and inexpensive microfluidic electrolysis cell. Electrochimica Acta, 2011, 56, 4322-4326.                                                                                                                     | 5.2 | 44        |
| 33 | The methoxylation of N-formylpyrrolidine in a microfluidic electrolysis cell for routine synthesis.<br>Electrochimica Acta, 2012, 69, 197-202.                                                                         | 5.2 | 44        |
| 34 | An extended channel length microflow electrolysis cell for convenient laboratory synthesis.<br>Electrochemistry Communications, 2016, 73, 63-66.                                                                       | 4.7 | 44        |
| 35 | Microelectrode procedures for the determination of silicate and phosphate in waters - fundamental studies. Electroanalysis, 1997, 9, 1311-1317.                                                                        | 2.9 | 39        |
| 36 | Electrochemical Deprotection of <i>para</i> -Methoxybenzyl Ethers in a Flow Electrolysis Cell.<br>Organic Letters, 2017, 19, 2050-2053.                                                                                | 4.6 | 39        |

DEREK PLETCHER

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Approaches to the Integration of Electrochemistry and Biotechnology: I. Enzymeâ€Modified Reticulated<br>Vitreous Carbon Electrodes. Journal of the Electrochemical Society, 1997, 144, 3705-3710.         | 2.9 | 38        |
| 38 | A Potential Step Study of the Influence of Metal Adatoms and Solution pH on the Rate of Formic Acid Oxidation at Pt Electrodes. Journal of the Electrochemical Society, 1983, 130, 2187-2192.             | 2.9 | 37        |
| 39 | Electrode coatings from sprayed titanium dioxide nanoparticles – behaviour in NaOH solutions.<br>Electrochemistry Communications, 2001, 3, 390-394.                                                       | 4.7 | 35        |
| 40 | Speciation and electrochemistry of brines containing acetate ion and carbon dioxide. Journal of Electroanalytical Chemistry, 2002, 538-539, 285-297.                                                      | 3.8 | 35        |
| 41 | Cubane Electrochemistry: Direct Conversion of Cubane Carboxylic Acids to Alkoxy Cubanes Using the<br>Hofer–Moest Reaction under Flow Conditions. Chemistry - A European Journal, 2020, 26, 374-378.       | 3.3 | 34        |
| 42 | The electrosynthesis of diaryliodonium salts. Tetrahedron Letters, 2000, 41, 8995-8998.                                                                                                                   | 1.4 | 30        |
| 43 | Amperometric sensor for carbon dioxide: design, characteristics, and performance. Analytical Chemistry, 1989, 61, 577-580.                                                                                | 6.5 | 29        |
| 44 | Further studies of the anodic dissolution in sodium chloride electrolyte of aluminium alloys containing tin and gallium. Journal of Power Sources, 2009, 193, 895-898.                                    | 7.8 | 29        |
| 45 | The Influence of Deposition Conditions and Dopant Ions on the Structure, Activity, and Stability of Lead Dioxide Anode Coatings. Journal of the Electrochemical Society, 2005, 152, D97.                  | 2.9 | 23        |
| 46 | Electrolytic removal of cupric ions from dilute liquors using reticulated vitreous carbon cathodes.<br>Journal of Chemical Technology and Biotechnology, 1992, 55, 147-155.                               | 3.2 | 23        |
| 47 | A microelectrode study of the influence of electrolyte on the reduction of quinones in aprotic solvents. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 3445-3450.                      | 1.7 | 21        |
| 48 | A design of flow electrolysis cell for â€~Home' fabrication. Reaction Chemistry and Engineering, 2020, 5,<br>712-718.                                                                                     | 3.7 | 21        |
| 49 | Studies of the anodic dissolution of aluminium alloys containing tin and gallium using imaging with a high-speed camera. Electrochimica Acta, 2009, 54, 6668-6673.                                        | 5.2 | 19        |
| 50 | The reduction of bromate at molybdenum oxide film cathodes. Electroanalysis, 1996, 8, 1105-1111.                                                                                                          | 2.9 | 16        |
| 51 | Influence of electrolyte concentration on coupled chemical reactions Part 1Reduction of<br>Coll(salen)in aprotic solvents. Journal of the Chemical Society, Faraday Transactions, 1997, 93,<br>3669-3675. | 1.7 | 16        |
| 52 | Electrosyntheses from Aromatic Aldehydes in a Flow Cell. Part I. The Reduction of Benzaldehyde Acta<br>Chemica Scandinavica, 1998, 52, 23-31.                                                             | 0.7 | 15        |
| 53 | Ytterbium(II) as a mediator in organic electrosynthesis—possibilities and limitations. Electrochimica<br>Acta, 2003, 48, 1065-1071.                                                                       | 5.2 | 14        |
| 54 | The Electrochemistry and Electrochemical Technology of Nitrate. Modern Aspects of<br>Electrochemistry, 2009, , 1-61.                                                                                      | 0.2 | 14        |

DEREK PLETCHER

0

| #  | Article                                                                                                                                                                                                                                                     | IF               | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 55 | The Synthesis of Diaryliodonium Salts by the Anodic Oxidation of Aryl Iodide/Arene Mixtures. Journal of the Electrochemical Society, 2001, 148, D37.                                                                                                        | 2.9              | 13        |
| 56 | Approaches to the Integration of Electrochemistry and Biotechnology II. The Horseradish Peroxidase<br>Catalyzed Oxidation of 2,4,6â€Trimethylphenol by Electrogenerated Hydrogen Peroxide. Journal of the<br>Electrochemical Society, 1999, 146, 1088-1092. | 2.9              | 11        |
| 57 | The reduction of carbonyl compounds at carbon electrodes in acidic water/methanol mixtures.<br>Electrochemistry Communications, 2000, 2, 141-144.                                                                                                           | 4.7              | 10        |
| 58 | Electrolysis cells for laboratory organic synthesis. Current Opinion in Electrochemistry, 2020, 24, 1-5.                                                                                                                                                    | 4.8              | 10        |
| 59 | The Partial Anodic Oxidation of Aliphatic Hydrocarbons. Chemie-Ingenieur-Technik, 1972, 44, 187-191.                                                                                                                                                        | 0.8              | 8         |
| 60 | The influence of non-ionic surfactants on electrosynthesis in extended channel, narrow gap electrolysis cells. Electrochemistry Communications, 2019, 100, 6-10.                                                                                            | 4.7              | 7         |
| 61 | Electrosyntheses from Aromatic Aldehydes in a Flow Cell. Part II. The Cross-Coupling of<br>Benzaldehydes to Unsymmetrical Diols Acta Chemica Scandinavica, 1998, 52, 32-36.                                                                                 | 0.7              | 7         |
| 62 | The catalysis of carbon dioxide hydration by acetate ion. Journal of Electroanalytical Chemistry, 2008, 619-620, 83-86.                                                                                                                                     | 3.8              | 6         |
| 63 | The Rates of Oxidation of  HCOOH  and  DCOOH  at Lead Adatom overed Pt Anodes. Journa<br>Electrochemical Society, 1984, 131, 957-958.                                                                                                                       | al of the<br>2.9 | 2         |
|    |                                                                                                                                                                                                                                                             |                  |           |

Bioelectrosynthesis–Electrolysis and Electrodialysis. , 0, , 327-358.