Kathryn E Hentges

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1877021/publications.pdf

Version: 2024-02-01

471509 454955 1,025 38 17 30 citations h-index g-index papers 40 40 40 2087 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Functional genetic analysis of mouse chromosome 11. Nature, 2003, 425, 81-86.	27.8	194
2	Whole Exome Sequencing Reveals the Major Genetic Contributors to Nonsyndromic Tetralogy of Fallot. Circulation Research, 2019, 124, 553-563.	4. 5	118
3	Defining the Role of Essential Genes in Human Disease. PLoS ONE, 2011, 6, e27368.	2.5	89
4	Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation. Genome Biology, 2019, 20, 171.	8.8	69
5	Gene Duplication and Environmental Adaptation within Yeast Populations. Genome Biology and Evolution, 2010, 2, 591-601.	2.5	44
6	Discovery of Candidate Disease Genes in ENU–Induced Mouse Mutants by Large-Scale Sequencing, Including a Splice-Site Mutation in Nucleoredoxin. PLoS Genetics, 2009, 5, e1000759.	3.5	39
7	The Mediator complex protein Med31 is required for embryonic growth and cell proliferation during mammalian development. Developmental Biology, 2010, 342, 146-156.	2.0	38
8	Checks and balancers: balancer chromosomes to facilitate genome annotation. Trends in Genetics, 2004, 20, 252-259.	6.7	35
9	Evi3, a zinc-finger protein related to EBFAZ, regulates EBF activity in B-cell leukemia. Oncogene, 2005, 24, 1220-1230.	5.9	31
10	Novel lethal mouse mutants produced in balancer chromosome screens. Gene Expression Patterns, 2006, 6, 653-665.	0.8	26
11	Regional Variation in the Density of Essential Genes in Mice. PLoS Genetics, 2007, 3, e72.	3.5	26
12	The Use of Scenario-Based-Learning Interactive Software to Create Custom Virtual Laboratory Scenarios for Teaching Genetics. Genetics, 2008, 179, 1151-1155.	2.9	25
13	Disease modeling of core pre-mRNA splicing factor haploinsufficiency. Human Molecular Genetics, 2019, 28, 3704-3723.	2.9	24
14	Non-muscle myosin IIB (Myh10) is required for epicardial function and coronary vessel formation during mammalian development. PLoS Genetics, 2017, 13, e1007068.	3. 5	22
15	Enforced Expression of Hoxa3 Inhibits Classical and Promotes Alternative Activation of Macrophages In Vitro and In Vivo. Journal of Immunology, 2016, 197, 872-884.	0.8	21
16	Mediator complex proteins are required for diverse developmental processes. Seminars in Cell and Developmental Biology, 2011, 22, 769-775.	5 . 0	20
17	Genome-wide identification of mouse congenital heart disease loci. Human Molecular Genetics, 2010, 19, 3105-3113.	2.9	19
18	Integration of Large-Scale Genomic Data Sources With Evolutionary History Reveals Novel Genetic Loci for Congenital Heart Disease. Circulation Genomic and Precision Medicine, 2019, 12, 442-451.	3 . 6	19

#	Article	IF	CITATIONS
19	Identifying mouse developmental essential genes using machine learning. DMM Disease Models and Mechanisms, $2018,11,.$	2.4	18
20	Properties of genes essential for mouse development. PLoS ONE, 2017, 12, e0178273.	2.5	17
21	The functional diversity of essential genes required for mammalian cardiac development. Genesis, 2014, 52, 713-737.	1.6	15
22	<i>EFTUD2</i> missense variants disrupt protein function and splicing in mandibulofacial dysostosis Guionâ€Almeida type. Human Mutation, 2020, 41, 1372-1382.	2.5	15
23	Retroviral insertions in the VISION database identify molecular pathways in mouse lymphoid leukemia and lymphoma. Mammalian Genome, 2007, 18, 709-722.	2.2	14
24	Association of congenital cardiovascular malformation and neuropsychiatric phenotypes with 15q11.2 (BP1 \hat{a} e"BP2) deletion in the UK Biobank. European Journal of Human Genetics, 2020, 28, 1265-1273.	2.8	14
25	Transcriptional regulation of the protoâ€oncogene Zfp521 by SPI1 (PU.1) and HOXC13. Genesis, 2016, 54, 519-533.	1.6	10
26	Locus heterogeneity disease genes encode proteins with high interconnectivity in the human protein interaction network. Frontiers in Genetics, 2014, 5, 434.	2.3	8
27	The Essentiality Status of Mouse Duplicate Gene Pairs Correlates with Developmental Co-Expression Patterns. Scientific Reports, 2019, 9, 3224.	3.3	8
28	Erbb2 Is Required for Cardiac Atrial Electrical Activity during Development. PLoS ONE, 2014, 9, e107041.	2.5	7
29	Zfp521 promotes B-cell viability and cyclin D1 gene expression in a B cell culture system. Leukemia Research, 2016, 46, 10-17.	0.8	7
30	Comparative physical maps of the human and mouse Meckel syndrome critical regions. Mammalian Genome, 2004, 15, 252-264.	2.2	6
31	Tnfrsf13c (Baffr) is Mis-expressed in Tumors with Murine Leukemia Virus Insertions at Lvis22. Genomics, 2002, 80, 204-212.	2.9	5
32	Correlation of microsynteny conservation and disease gene distribution in mammalian genomes. BMC Genomics, 2009, 10, 521.	2.8	5
33	The role of splicing factors in retinitis pigmentosa: links to cilia. Biochemical Society Transactions, 2021, 49, 1221-1231.	3.4	5
34	Filamentous nestin and nonmuscle myosin IIB are associated with a migratory phenotype in neonatal rat cardiomyocytes. Journal of Cellular Physiology, 2021, 236, 1281-1294.	4.1	4
35	Response to correspondence on "Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation― Genome Biology, 2021, 22, 99.	8.8	4
36	The Mediator complex: Crucial functions in transcription with links to development and disease. Seminars in Cell and Developmental Biology, 2011, 22, 728.	5.0	3

3

#	‡	Article	IF	CITATIONS
3	37	A missense mutation of ErbB2 produces a novel mouse model of stillbirth associated with a cardiac abnormality but lacking abnormalities of placental structure. PLoS ONE, 2020, 15, e0233007.	2.5	1
3	38	Câ€Identification of the major genetic contributors to tetralogy of fallot. , 2019, , .		0