Claire Ce Hills

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1876972/publications.pdf

Version: 2024-02-01

		430442	344852	
39	1,503	18	36	
papers	citations	h-index	g-index	
39	39	39	1939	
39	39	39	1939	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Expression of 25-hydroxyvitamin D3-1α-hydroxylase in pancreatic islets. Journal of Steroid Biochemistry and Molecular Biology, 2004, 89-90, 121-125.	1.2	296
2	The role of TGF- \hat{l}^2 and epithelial-to mesenchymal transition in diabetic nephropathy. Cytokine and Growth Factor Reviews, 2011, 22, 131-9.	3.2	192
3	TGF-Î ² 1-Induced Epithelial-to-Mesenchymal Transition and Therapeutic Intervention in Diabetic Nephropathy. American Journal of Nephrology, 2010, 31, 68-74.	1.4	178
4	$TGF\hat{l}^2$ modulates cell-to-cell communication in early epithelial-to-mesenchymal transition. Diabetologia, 2012, 55, 812-824.	2.9	80
5	Cellular and physiological effects of C-peptide. Clinical Science, 2009, 116, 565-574.	1.8	76
6	C-Peptide as a Therapeutic Tool in Diabetic Nephropathy. American Journal of Nephrology, 2010, 31, 389-397.	1.4	65
7	C-peptide reverses TGF- \hat{l}^21 -induced changes in renal proximal tubular cells: implications for treatment of diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2009, 296, F614-F621.	1.3	62
8	High Glucose Up-Regulates ENaC and SGK1 Expression in HCD-Cells. Cellular Physiology and Biochemistry, 2006, 18, 337-346.	1.1	52
9	Intracellular Signalling by C-Peptide. Experimental Diabetes Research, 2008, 2008, 1-8.	3.8	39
10	Glucose-evoked alterations in connexin43-mediated cell-to-cell communication in human collecting duct: a possible role in diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2006, 291, F1045-F1051.	1.3	32
11	'Special K' and a Loss of Cell-To-Cell Adhesion in Proximal Tubule-Derived Epithelial Cells: Modulation of the Adherens Junction Complex by Ketamine. PLoS ONE, 2013, 8, e71819.	1.1	32
12	Transforming Growth Factor Beta 1 Drives a Switch in Connexin Mediated Cell-to-Cell Communication in Tubular Cells of the Diabetic Kidney. Cellular Physiology and Biochemistry, 2018, 45, 2369-2388.	1.1	32
13	Proinsulin C-Peptide Antagonizes the Profibrotic Effects of TGF- \hat{I}^21 via Up-Regulation of Retinoic Acid and HGF-Related Signaling Pathways. Molecular Endocrinology, 2010, 24, 822-831.	3.7	31
14	Calcium-Sensing Receptor Activation Increases Cell-Cell Adhesion and ÄY-Cell Function. Cellular Physiology and Biochemistry, 2012, 30, 575-586.	1.1	28
15	Blocking Connexin-43 mediated hemichannel activity protects against early tubular injury in experimental chronic kidney disease. Cell Communication and Signaling, 2020, 18, 79.	2.7	28
16	Quantifying cellular mechanics and adhesion in renal tubular injury using single cell force spectroscopy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1013-1021.	1.7	25
17	Mind the gap: connexins and cell–cell communication in the diabetic kidney. Diabetologia, 2015, 58, 233-241.	2.9	23
18	Serum and glucocorticoid regulated kinase and disturbed renal sodium transport in diabetes. Journal of Endocrinology, 2008, 199, 343-349.	1.2	21

#	Article	IF	CITATIONS
19	TGF-β1 Mediates Glucose-evoked Up-regulation of Connexin-43 Cell-to-cell Communication in HCD-cells. Cellular Physiology and Biochemistry, 2009, 24, 177-186.	1.1	19
20	Functional Expression of TRPV4 Channels in Human Collecting Duct Cells: Implications for Secondary Hypertension in Diabetic Nephropathy. Experimental Diabetes Research, 2012, 2012, 1-9.	3.8	19
21	Quantitative investigation of calcimimetic R568 on beta cell adhesion and mechanics using AFM singleâ€cell force spectroscopy. FEBS Letters, 2014, 588, 1178-1183.	1.3	19
22	C-Peptide and its Intracellular Signaling. Review of Diabetic Studies, 2009, 6, 138-147.	0.5	18
23	The putative imidazoline receptor agonist, harmane, promotes intracellular calcium mobilisation in pancreatic \hat{l}^2 -cells. European Journal of Pharmacology, 2004, 501, 31-39.	1.7	17
24	The Calcium-Sensing Receptor and Î ² -Cell Function. Vitamins and Hormones, 2014, 95, 249-267.	0.7	16
25	Comparative Effects of Efaroxan and b-Carbolines on the Secretory Activity of Rodent and Human b Cells. Annals of the New York Academy of Sciences, 2003, 1009, 167-174.	1.8	15
26	The calcium-sensing receptor and insulin secretion: a role outside systemic control 15 years on. Journal of Endocrinology, 2008, 199, 1-4.	1.2	15
27	Nanomechanical Investigation of Soft Biological Cell Adhesion using Atomic Force Microscopy. Cellular and Molecular Bioengineering, 2015, 8, 22-31.	1.0	13
28	Collagen I Modifies Connexin-43 Hemichannel Activity via Integrin α2β1 Binding in TGFβ1-Evoked Renal Tubular Epithelial Cells. International Journal of Molecular Sciences, 2021, 22, 3644.	1.8	11
29	Visfatin Reduces Gap Junction Mediated Cell-to-Cell Communication in Proximal Tubule-Derived Epithelial Cells. Cellular Physiology and Biochemistry, 2013, 32, 1200-1212.	1.1	9
30	Purinergic receptor (P2X7) activation reduces cell–cell adhesion between tubular epithelial cells of the proximal kidney. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 22, 102108.	1.7	9
31	Connexinâ€mediated cell communication in the kidney: A potential therapeutic target for future intervention of diabetic kidney disease?. Experimental Physiology, 2020, 105, 219-229.	0.9	9
32	Carboxyfluorescein Dye Uptake to Measure Connexin-mediated Hemichannel Activity in Cultured Cells. Bio-protocol, 2021, 11, e3901.	0.2	5
33	Danegaptide Prevents TGF \hat{l}^21 -Induced Damage in Human Proximal Tubule Epithelial Cells of the Kidney. International Journal of Molecular Sciences, 2021, 22, 2809.	1.8	5
34	Examining Cell-Cell Interactions in the Kidney Using AFM Single-Cell Force Spectroscopy. Methods in Molecular Biology, 2020, 2067, 189-201.	0.4	5
35	Connexin 43: A Target for the Treatment of Inflammation in Secondary Complications of the Kidney and Eye in Diabetes. International Journal of Molecular Sciences, 2022, 23, 600.	1.8	4
36	Examining Local Cell-to-Cell Signalling in the Kidney Using ATP Biosensing. Methods in Molecular Biology, 2020, 2346, 135-149.	0.4	3

3

CLAIRE CE HILLS

#	Article	IF	CITATIONS
37	Microarray Analysis Reveals Up-Regulation of Retinoic Acid and Hepatocyte Growth Factor Related Signaling Pathways by Pro-Insulin C-Peptide in Kidney Proximal Tubular Cells: Antagonism of the Pro-Fibrotic Effects of TGF- \hat{l}^21 . Journal of Clinical Endocrinology and Metabolism, 2010, 95, 1478-1478.	1.8	0
38	Connexins and gap-junction mediated intercellular communication in the diabetic kidney. Endocrine Abstracts, 0 , , .	0.0	0
39	Connexins, hemi-channels and ATP release in the diabetic kidney. Endocrine Abstracts, 0, , .	0.0	O