Koji Arai

List of Publications by Citations

Source: https://exaly.com/author-pdf/1876780/koji-arai-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

259 papers

43,616 citations

74 h-index 208 g-index

267 ext. papers

55,108 ext. citations

5.5 avg, IF

5.71 L-index

#	Paper	IF	Citations
259	Observation of Gravitational Waves from a Binary Black Hole Merger. <i>Physical Review Letters</i> , 2016 , 116, 061102	7.4	6108
258	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. <i>Physical Review Letters</i> , 2017 , 119, 161101	7.4	4272
257	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2016 , 116, 241103	7.4	2136
256	Multi-messenger Observations of a Binary Neutron Star Merger. <i>Astrophysical Journal Letters</i> , 2017 , 848, L12	7.9	1935
255	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. <i>Astrophysical Journal Letters</i> , 2017 , 848, L13	7.9	1614
254	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. <i>Physical Review Letters</i> , 2017 , 118, 221101	7.4	1609
253	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2017 , 119, 141101	7.4	1270
252	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. <i>Physical Review X</i> , 2019 , 9,	9.1	1169
251	Advanced LIGO. Classical and Quantum Gravity, 2015 , 32, 074001	3.3	1098
250	GW170817: Measurements of Neutron Star Radii and Equation of State. <i>Physical Review Letters</i> , 2018 , 121, 161101	7.4	867
249	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101	7.4	837
248	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. <i>Astrophysical Journal Letters</i> , 2017 , 851, L35	7.9	809
247	Characterization of the LIGO detectors during their sixth science run. <i>Classical and Quantum Gravity</i> , 2015 , 32, 115012	3.3	790
246	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. <i>Physical Review X</i> , 2016 , 6,	9.1	723
245	GW190425: Observation of a Compact Binary Coalescence with Total Mass ~ 3.4 M?. <i>Astrophysical Journal Letters</i> , 2020 , 892, L3	7.9	591
244	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. <i>Nature Photonics</i> , 2013 , 7, 613-619	33.9	572
243	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. <i>Astrophysical Journal Letters</i> , 2020 , 896, L44	7.9	571

(2020-2011)

242	A gravitational wave observatory operating beyond the quantum shot-noise limit. <i>Nature Physics</i> , 2011 , 7, 962-965	16.2	554	
241	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2018 , 21, 3	32.5	543	
240	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102	7.4	515	
239	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 818, L22	7.9	512	
238	Exploring the sensitivity of next generation gravitational wave detectors. <i>Classical and Quantum Gravity</i> , 2017 , 34, 044001	3.3	454	
237	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9,	9.1	423	
236	GW190521: A Binary Black Hole Merger with a Total Mass of 150 M_{?}. <i>Physical Review Letters</i> , 2020 , 125, 101102	7.4	420	
235	A gravitational-wave standard siren measurement of the Hubble constant. <i>Nature</i> , 2017 , 551, 85-88	50.4	413	
234	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. <i>Living Reviews in Relativity</i> , 2016 , 19, 1	32.5	393	
233	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. <i>Astrophysical Journal Letters</i> , 2019 , 882, L24	7.9	381	
232	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. <i>Physical Review Letters</i> , 2016 , 116, 131103	7.4	328	
231	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. <i>Physical Review X</i> , 2021 , 11,	9.1	311	
230	The Japanese space gravitational wave antenna: DECIGO. Classical and Quantum Gravity, 2011, 28, 0940	01313	308	
229	The Japanese space gravitational wave antenna DECIGO. Classical and Quantum Gravity, 2006, 23, S125-	S <u>\$</u> .31	305	
228	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. <i>Physical Review D</i> , 2019 , 100,	4.9	258	
227	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	253	
226	Stable operation of a 300-m laser interferometer with sufficient sensitivity to detect gravitational-wave events within our galaxy. <i>Physical Review Letters</i> , 2001 , 86, 3950-4	7.4	233	
225	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. <i>Physical Review D</i> , 2020 , 102,	4.9	212	

224	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 833, L1	7.9	209
223	Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. <i>Physical Review D</i> , 2016 , 93,	4.9	208
222	Properties and Astrophysical Implications of the 150 M? Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020 , 900, L13	7.9	207
221	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102	7.4	204
220	Population Properties of Compact Objects from the Second LIGOVirgo Gravitational-Wave Transient Catalog. <i>Astrophysical Journal Letters</i> , 2021 , 913, L7	7.9	194
219	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. <i>Physical Review Letters</i> , 2016 , 116, 131102	7.4	188
218	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 826, L13	7.9	183
217	Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. <i>Physical Review Letters</i> , 2019 , 123, 231107	7.4	182
216	Search for gravitational waves from low mass compact binary coalescence in LIGOE sixth science run and VirgoE science runs 2 and 3. <i>Physical Review D</i> , 2012 , 85,	4.9	172
215	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016 , 33,	3.3	155
214	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2020 , 23, 3	32.5	144
213	Observation of Gravitational Waves from Two Neutron Star B lack Hole Coalescences. <i>Astrophysical Journal Letters</i> , 2021 , 915, L5	7.9	142
212	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121101	7.4	137
211	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 851, L16	7.9	133
210	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR B LACK HOLE MERGERS FROM ADVANCED LIGOS FIRST OBSERVING RUN. <i>Astrophysical Journal Letters</i> , 2016 , 832, L21	7.9	130
209	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 850, L39	7.9	127
208	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. <i>Physical Review D</i> , 2013 , 88,	4.9	122
207	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. <i>Physical Review Letters</i> , 2018 , 120, 091101	7.4	120

(2018-2019)

206	Search for the isotropic stochastic background using data from Advanced LIGO® second observing run. <i>Physical Review D</i> , 2019 , 100,	4.9	117
205	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014 , 785, 119	4.7	109
204	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. <i>Astrophysical Journal</i> , 2017 , 839, 12	4.7	107
203	LARGE-SCALE CRYOGENIC GRAVITATIONAL WAVE TELESCOPE. <i>International Journal of Modern Physics D</i> , 1999 , 08, 557-579	2.2	101
202	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. <i>Physical Review D</i> , 2012 , 85,	4.9	96
201	Observing gravitational-wave transient GW150914 with minimal assumptions. <i>Physical Review D</i> , 2016 , 93,	4.9	94
200	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. <i>Astrophysical Journal</i> , 2012 , 760, 12	4.7	94
199	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary B lack-hole Merger GW170814. <i>Astrophysical Journal Letters</i> , 2019 , 876, L7	7.9	91
198	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009\(\textbf{Q} 010. \) Physical Review D, 2013 , 87,	4.9	91
197	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. <i>Physical Review X</i> , 2016 , 6,	9.1	89
196	Sensitivity and performance of the Advanced LIGO detectors in the third observing run. <i>Physical Review D</i> , 2020 , 102,	4.9	84
195	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. <i>Physical Review D</i> , 2013 , 87,	4.9	84
194	The status of DECIGO. Journal of Physics: Conference Series, 2017, 840, 012010	0.3	83
193	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. <i>Physical Review D</i> , 2019 , 100,	4.9	81
192	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. <i>Physical Review D</i> , 2021 , 103,	4.9	81
191	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. <i>Physical Review D</i> , 2016 , 93,	4.9	80
190	A guide to LIGOIVirgo detector noise and extraction of transient gravitational-wave signals. <i>Classical and Quantum Gravity</i> , 2020 , 37, 055002	3.3	78
189	Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO. <i>Physical Review D</i> , 2018 , 97,	4.9	77

Review D, 2018, 97,

GW170817. Astrophysical Journal, 2019, 875, 160

Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical

60

4.9

(2017-2018)

170	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. <i>Physical Review Letters</i> , 2018 , 120, 201102	7.4	60	
169	Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors. <i>Physical Review Letters</i> , 2014 , 112, 131101	7.4	59	
168	The characterization of Virgo data and its impact on gravitational-wave searches. <i>Classical and Quantum Gravity</i> , 2012 , 29, 155002	3.3	59	
167	Improving astrophysical parameter estimation via offline noise subtraction for Advanced LIGO. <i>Physical Review D</i> , 2019 , 99,	4.9	58	
166	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. <i>Astrophysical Journal</i> , 2015 , 813, 39	4.7	58	
165	Directed search for continuous gravitational waves from the Galactic center. <i>Physical Review D</i> , 2013 , 88,	4.9	57	
164	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012 , 203, 28	8	57	
163	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. <i>Physical Review D</i> , 2017 , 95,	4.9	54	
162	All-sky search for periodic gravitational waves in the O1 LIGO data. <i>Physical Review D</i> , 2017 , 96,	4.9	54	
161	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. <i>Physical Review D</i> , 2017 , 96,	4.9	54	
160	First all-sky search for continuous gravitational waves from unknown sources in binary systems. <i>Physical Review D</i> , 2014 , 90,	4.9	54	
159	IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS. <i>Astrophysical Journal</i> , 2012 , 755, 2	4.7	53	
158	Laser-interferometric detectors for gravitational wave backgrounds at 100 MHz: Detector design and sensitivity. <i>Physical Review D</i> , 2008 , 77,	4.9	52	
157	Search for a stochastic background of 100-MHz gravitational waves with laser interferometers. <i>Physical Review Letters</i> , 2008 , 101, 101101	7.4	52	
156	SUPPLEMENT: THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914[[2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14	8	52	
155	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7	8	51	
154	First Search for Nontensorial Gravitational Waves from Known Pulsars. <i>Physical Review Letters</i> , 2018 , 120, 031104	7.4	50	
153	On the Progenitor of Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 850, L40	7.9	50	

152	A cryogenic silicon interferometer for gravitational-wave detection. <i>Classical and Quantum Gravity</i> , 2020 , 37, 165003	3.3	50
151	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. <i>Astrophysical Journal</i> , 2019 , 875, 161	4.7	49
150	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2018 , 121, 231103	7.4	49
149	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. <i>Physical Review D</i> , 2017 , 95,	4.9	47
148	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. <i>Astrophysical Journal Letters</i> , 2011 , 734, L35	7.9	47
147	Search for gravitational waves from intermediate mass binary black holes. <i>Physical Review D</i> , 2012 , 85,	4.9	46
146	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. <i>Astrophysical Journal</i> , 2021 , 909, 218	4.7	46
145	The basic physics of the binary black hole merger GW150914. <i>Annalen Der Physik</i> , 2017 , 529, 1600209	2.6	45
144	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO. <i>Astrophysical Journal</i> , 2019 , 875, 122	4.7	45
143	Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts. <i>Physical Review D</i> , 2005 , 72,	4.9	44
142	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. <i>Physical Review D</i> , 2016 , 94,	4.9	43
141	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. <i>Physical Review D</i> , 2019 , 99,	4.9	43
140	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. <i>Astrophysical Journal</i> , 2017 , 841, 89	4.7	42
139	Interferometry for the LISA technology package (LTP) aboard SMART-2. <i>Classical and Quantum Gravity</i> , 2003 , 20, S153-S161	3.3	42
138	Achieving resonance in the Advanced LIGO gravitational-wave interferometer. <i>Classical and Quantum Gravity</i> , 2014 , 31, 245010	3.3	41
137	Present status of large-scale cryogenic gravitational wave telescope. <i>Classical and Quantum Gravity</i> , 2004 , 21, S1161-S1172	3.3	41
136	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600¶000 Hz. <i>Physical Review D</i> , 2012 , 85,	4.9	40
135	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. <i>Physical Review D</i> , 2019 , 100,	4.9	39

(2015-2019)

134	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. <i>Physical Review D</i> , 2019 , 100,	4.9	39	
133	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. <i>Physical Review D</i> , 2017 , 96,	4.9	39	
132	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. <i>Physical Review D</i> , 2015 , 91,	4.9	38	
131	SUPPLEMENT: IIOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914[[2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016 , 225, 8	8	38	
130	Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries. <i>Physical Review D</i> , 2006 , 73,	4.9	38	
129	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. <i>Physical Review D</i> , 2018 , 97,	4.9	37	
128	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. <i>Astrophysical Journal</i> , 2019 , 883, 149	4.7	36	
127	The Japanese space gravitational wave antenna - DECIGO. <i>Journal of Physics: Conference Series</i> , 2008 , 122, 012006	0.3	36	
126	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. <i>Physical Review D</i> , 2020 , 101,	4.9	36	
125	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. <i>Astrophysical Journal</i> , 2017 , 847, 47	4.7	35	
124	Space gravitational-wave antennas DECIGO and B-DECIGO. <i>International Journal of Modern Physics D</i> , 2019 , 28, 1845001	2.2	35	
123	First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA. <i>Classical and Quantum Gravity</i> , 2019 , 36, 165008	3.3	34	
122	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. <i>Classical and Quantum Gravity</i> , 2014 , 31, 115004	3.3	34	
121	Overview of KAGRA: Detector design and construction history. <i>Progress of Theoretical and Experimental Physics</i> , 2021 , 2021,	5.4	34	
120	Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo® third observing run. <i>Physical Review D</i> , 2021 , 104,	4.9	33	
119	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. <i>Physical Review D</i> , 2014 , 89,	4.9	32	
118	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. <i>Physical Review D</i> , 2017 , 96,	4.9	32	
117	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. <i>Physical Review D</i> , 2015 , 91,	4.9	32	

116	DECIGO and DECIGO pathfinder. Classical and Quantum Gravity, 2010, 27, 084010	3.3	32
115	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. <i>Astrophysical Journal Letters</i> , 2020 , 902, L21	7.9	32
114	Directional limits on persistent gravitational waves using data from Advanced LIGOE first two observing runs. <i>Physical Review D</i> , 2019 , 100,	4.9	31
113	Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise Reduction in Advanced Gravitational-Wave Detectors. <i>Physical Review Letters</i> , 2020 , 124, 171101	7.4	31
112	LIGO detector characterization in the second and third observing runs. <i>Classical and Quantum Gravity</i> ,	3.3	31
111	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. <i>Physical Review D</i> , 2019 , 100,	4.9	31
110	Search for gravitational waves associated with Fray bursts detected by the interplanetary network. <i>Physical Review Letters</i> , 2014 , 113, 011102	7.4	30
109	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. <i>Physical Review D</i> , 2013 , 88,	4.9	30
108	Reduction of thermal fluctuations in a cryogenic laser interferometric gravitational wave detector. <i>Physical Review Letters</i> , 2012 , 108, 141101	7.4	30
107	First low frequency all-sky search for continuous gravitational wave signals. <i>Physical Review D</i> , 2016 , 93,	4.9	29
106	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. <i>Journal of Cosmology and Astroparticle Physics</i> , 2013 , 2013, 008-008	6.4	29
105	Operational status of TAMA300 with the seismic attenuation system (SAS). <i>Classical and Quantum Gravity</i> , 2008 , 25, 114036	3.3	29
104	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. <i>Physical Review D</i> , 2016 , 94,	4.9	29
103	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. <i>Physical Review D</i> , 2016 , 94,	4.9	28
102	All-sky search for long-duration gravitational wave transients with initial LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	27
101	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. <i>Classical and Quantum Gravity</i> , 2014 , 31, 165014	3.3	27
100	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. <i>Physical Review D</i> , 2015 , 91,	4.9	26
99	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005 2 010. <i>Physical Review D</i> , 2014 , 89,	4.9	26

(2014-2009)

98	DECIGO: The Japanese space gravitational wave antenna. <i>Journal of Physics: Conference Series</i> , 2009 , 154, 012040	0.3	26
97	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. <i>Physical Review D</i> , 2014 , 89,	4.9	25
96	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. <i>Physical Review D</i> , 2014 , 90,	4.9	25
95	Status of Japanese gravitational wave detectors. Classical and Quantum Gravity, 2009, 26, 204020	3.3	23
94	Observation results by the TAMA300 detector on gravitational wave bursts from stellar-core collapses. <i>Physical Review D</i> , 2005 , 71,	4.9	23
93	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. <i>Astrophysical Journal</i> , 2019 , 871, 90	4.7	22
92	The Japanese space gravitational wave antenna; DECIGO. <i>Journal of Physics: Conference Series</i> , 2008 , 120, 032004	0.3	22
91	Constraining the p-Mode-g-Mode Tidal Instability with GW170817. <i>Physical Review Letters</i> , 2019 , 122, 061104	7.4	22
90	Residual amplitude modulation in interferometric gravitational wave detectors. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2014 , 31, 81-8	1.8	21
89	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO-Virgo Observing Run. <i>Physical Review Letters</i> , 2021 , 126, 241102	7.4	21
88	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. <i>Astrophysical Journal</i> , 2019 , 886, 75	4.7	21
87	Current status of large-scale cryogenic gravitational wave telescope. <i>Classical and Quantum Gravity</i> , 2003 , 20, S871-S884	3.3	20
86	Improvement of the vibration isolation system for TAMA300. <i>Classical and Quantum Gravity</i> , 2002 , 19, 1599-1604	3.3	20
85	Japanese large-scale interferometers. Classical and Quantum Gravity, 2002, 19, 1237-1245	3.3	20
84	Current status of Japanese detectors. Classical and Quantum Gravity, 2007, 24, S399-S403	3.3	19
83	Vacuum-compatible vibration isolation stack for an interferometric gravitational wave detector TAMA300. <i>Review of Scientific Instruments</i> , 2002 , 73, 2428-2433	1.7	19
82	Focussing DIRC IA new compact Cherenkov ring imaging device. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 1996 , 382, 430-440	1.2	19
81	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. <i>Classical and Quantum Gravity</i> , 2014 , 31, 085014	3.3	18

80	First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO. <i>Physical Review Letters</i> , 2017 , 118, 151102	7.4	18
79	Gravitational wave astronomy: the current status. <i>Science China: Physics, Mechanics and Astronomy</i> , 2015 , 58, 1	3.6	18
78	Development of a multistage laser frequency stabilization for an interferometric gravitational-wave detector. <i>Review of Scientific Instruments</i> , 2003 , 74, 4176-4183	1.7	18
77	New signal extraction scheme with harmonic demodulation for power-recycled FabryPerotMichelson interferometers. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2000 , 273, 15-24	2.3	18
76	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. <i>Physical Review D</i> , 2019 , 99,	4.9	17
75	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGOE Second Observing Run. <i>Astrophysical Journal</i> , 2019 , 874, 163	4.7	17
74	Multicolor cavity metrology. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2012 , 29, 2092-103	1.8	16
73	Coincidence analysis to search for inspiraling compact binaries using TAMA300 and LISM data. <i>Physical Review D</i> , 2004 , 70,	4.9	16
72	Passive, free-space heterodyne laser gyroscope. Classical and Quantum Gravity, 2016, 33, 035004	3.3	15
71	Thermal-noise-limited underground interferometer CLIO. Classical and Quantum Gravity, 2010 , 27, 0840	12523	15
70	All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data. <i>Physical Review D</i> , 2021 , 104,	4.9	15
69	All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. <i>Physical Review D</i> , 2021 , 103,	4.9	15
68	Environmental noise in advanced LIGO detectors. Classical and Quantum Gravity, 2021, 38, 145001	3.3	15
67	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. <i>Physical Review D</i> , 2016 , 93,	4.9	14
66	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. <i>Physical Review D</i> , 2017 , 95,	4.9	14
65	Sensing and controls for power-recycling of TAMA300. Classical and Quantum Gravity, 2002, 19, 1843-18	3483	14
64	Approaching the motional ground state of a 10-kg object. <i>Science</i> , 2021 , 372, 1333-1336	33.3	14
63	Coherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As Bragg mirrors. <i>Metrologia</i> , 2016 , 53, 860-868	2.1	14

62	DECIGO pathfinder. Classical and Quantum Gravity, 2009, 26, 094019	3.3	13
61	Demonstration of power recycling on a Fabry-Perot-type prototype gravitational wave detector. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1998 , 248, 145-150	2.3	13
60	Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. <i>Astrophysical Journal Letters</i> , 2021 , 913, L27	7.9	13
59	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065009	3.3	12
58	Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo® first three observing runs. <i>Physical Review D</i> , 2021 , 104,	4.9	12
57	Results of the search for inspiraling compact star binaries from TAMA300E observation in 2000E004. <i>Physical Review D</i> , 2006 , 74,	4.9	11
56	Gravitational-wave physics with Cosmic Explorer: Limits to low-frequency sensitivity. <i>Physical Review D</i> , 2021 , 103,	4.9	11
55	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007 2013. <i>Physical Review D</i> , 2016 , 93,	4.9	10
54	Long-term stabilization of a heterodyne metrology interferometer down to a noise level of 20 pm over an hour. <i>Applied Optics</i> , 2009 , 48, 6105-10	0.2	10
53	Development of a light source with an injection-locked Nd:YAG laser and a ring-mode cleaner for the TAMA 300 gravitational-wave detector. <i>Review of Scientific Instruments</i> , 2002 , 73, 2136-2142	1.7	10
52	Searches for Continuous Gravitational Waves from Young Supernova Remnants in the Early Third Observing Run of Advanced LIGO and Virgo. <i>Astrophysical Journal</i> , 2021 , 921, 80	4.7	10
51	Quantum correlation measurements in interferometric gravitational-wave detectors. <i>Physical Review A</i> , 2017 , 95,	2.6	9
50	Development of a frequency-detuned interferometer as a prototype experiment for next-generation gravitational-wave detectors. <i>Applied Optics</i> , 2005 , 44, 3179-91	1.7	9
49	Direct measurement of residual gas effect on the sensitivity in TAMA300. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2002 , 20, 1237-1241	2.9	9
48	Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data. <i>Physical Review D</i> , 2022 , 105,	4.9	9
47	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. <i>Astrophysical Journal</i> , 2020 , 893, 100	4.7	9
46	Measurement of optical losses in a high-finesse 300 m filter cavity for broadband quantum noise reduction in gravitational-wave detectors. <i>Physical Review D</i> , 2018 , 98,	4.9	8
45	Technique for in situ measurement of free spectral range and transverse mode spacing of optical cavities. <i>Applied Optics</i> , 2012 , 51, 6571-7	1.7	8

44	Recent progress of TAMA300. Journal of Physics: Conference Series, 2008, 120, 032010	0.3	8
43	Methods to characterize non-Gaussian noise in TAMA. Classical and Quantum Gravity, 2003, 20, S697-S7	'0 9 .3	8
42	Upper limits on gravitational-wave bursts radiated from stellar-core collapses in our galaxy. <i>Classical and Quantum Gravity</i> , 2005 , 22, S1283-S1291	3.3	8
41	Constraints from LIGO O3 Data on Gravitational-wave Emission Due to R-modes in the Glitching Pulsar PSR J0537日910. <i>Astrophysical Journal</i> , 2021 , 922, 71	4.7	8
40	Point absorbers in Advanced LIGO. Applied Optics, 2021, 60, 4047-4063	1.7	8
39	Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer. <i>Progress of Theoretical and Experimental Physics</i> , 2021 , 2021,	5.4	8
38	Broadband measurement of coating thermal noise in rigid Fabry Pflot cavities. <i>Metrologia</i> , 2015 , 52, 17-30	2.1	7
37	Optimal location of two laser-interferometric detectors for gravitational wave backgrounds at 100 MHz. <i>Classical and Quantum Gravity</i> , 2008 , 25, 225011	3.3	7
36	Vibration isolation system with a compact damping system for power recycling mirrors of KAGRA. <i>Classical and Quantum Gravity</i> , 2019 , 36, 095015	3.3	6
35	Direct measurement of the scattered light effect on the sensitivity in TAMA300. <i>Physical Review D</i> , 2004 , 70,	4.9	6
34	Signal-separation experiments for a power-recycled Fabry Perot Michelson interferometer by sideband elimination. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2000 , 268, 268-268.	2733	6
33	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGOVirgo Run O3a. <i>Astrophysical Journal</i> , 2021 , 915, 86	4.7	6
32	In situ characterization of the thermal state of resonant optical interferometers via tracking of their higher-order mode resonances. <i>Classical and Quantum Gravity</i> , 2015 , 32, 135018	3.3	5
31	Analysis methods for burst gravitational waves with TAMA data. <i>Classical and Quantum Gravity</i> , 2004 , 21, S1679-S1684	3.3	5
30	Application of independent component analysis to the iKAGRA data. <i>Progress of Theoretical and Experimental Physics</i> , 2020 , 2020,	5.4	5
29	An instrument to measure mechanical up-conversion phenomena in metals in the elastic regime. <i>Review of Scientific Instruments</i> , 2016 , 87, 065107	1.7	5
28	Overview of KAGRA: KAGRA science. <i>Progress of Theoretical and Experimental Physics</i> , 2021 , 2021,	5.4	5
27	LIGOE quantum response to squeezed states. <i>Physical Review D</i> , 2021 , 104,	4.9	5

26	Effects of transients in LIGO suspensions on searches for gravitational waves. <i>Review of Scientific Instruments</i> , 2017 , 88, 124501	1.7	4
25	DECIGO pathfinder. <i>Journal of Physics: Conference Series</i> , 2008 , 120, 032005	0.3	4
24	Evaluation of the performance of polished mirror surfaces for the TAMA gravitational wave detector by use of a wave-front tracing simulation. <i>Applied Optics</i> , 2002 , 41, 5913-20	1.7	4
23	All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. <i>Physical Review D</i> , 2021 , 104,	4.9	4
22	Improving the robustness of the advanced LIGO detectors to earthquakes. <i>Classical and Quantum Gravity</i> , 2020 , 37, 235007	3.3	4
21	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGON Third Observing Run. <i>Astrophysical Journal</i> , 2021 , 923, 14	4.7	4
20	Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants. <i>Physical Review D</i> , 2022 , 105,	4.9	4
19	Analysis for burst gravitational waves with TAMA300 data. Classical and Quantum Gravity, 2004 , 21, S73	353S740	D 3
18	Vibration isolation systems for the beam splitter and signal recycling mirrors of the KAGRA gravitational wave detector. <i>Classical and Quantum Gravity</i> , 2021 , 38, 065011	3.3	3
17	Silicon emissivity as a function of temperature. <i>International Journal of Heat and Mass Transfer</i> , 2020 , 157, 119863	4.9	2
16	Guided lock of a suspended optical cavity enhanced by a higher-order extrapolation. <i>Applied Optics</i> , 2017 , 56, 5470-5479	0.2	2
15	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA 2018 , 21, 1		2
14	Constraints on dark photon dark matter using data from LIGOE and VirgoE third observing run. <i>Physical Review D</i> , 2022 , 105,	4.9	2
13	All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data. <i>Physical Review D</i> , 2022 , 105,	4.9	2
12	External quantum efficiency enhancement by photon recycling with backscatter evasion. <i>Applied Optics</i> , 2018 , 57, 3372-3376	1.7	1
11	Online monitoring of alignment noises in TAMA300. <i>Journal of Physics: Conference Series</i> , 2006 , 32, 94-9	98 5.3	1
10	All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. <i>Physical Review D</i> , 2021 , 104,	4.9	1
9			

8	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO™irgo Run O3b. <i>Astrophysical Journal</i> , 2022 , 928, 186	4.7	1
7	Point Absorber Limits to Future Gravitational-Wave Detectors <i>Physical Review Letters</i> , 2021 , 127, 241	10 ₇ 2 ₄	O
6	Laser interferometric high-precision geometry (angle and length) monitor for JASMINE. <i>Proceedings of the International Astronomical Union</i> , 2007 , 3, 280-281	0.1	
5	Analysis of the laser noise propagation mechanism on the laser interferometer gravitational wave antenna. <i>Journal of Physics: Conference Series</i> , 2006 , 32, 74-79	0.3	
4	Influence of radio frequency harmonics to TAMA300 sensitivity. <i>Journal of Physics: Conference Series</i> , 2006 , 32, 99-104	0.3	
3	Contributions of oscillator noises to the sensitivity of TAMA300. <i>Journal of Physics: Conference Series</i> , 2006 , 32, 105-110	0.3	
2	Evaluation of the performance of polished mirror surfaces for the TAMA gravitational wave detector by use of a wave-front tracing simulation: erratum 2003 , 42, 1306		
1	Radiative Cooling of the Thermally Isolated System in KAGRA Gravitational Wave Telescope. Journal of Physics: Conference Series, 2021, 1857, 012002	0.3	