Xiangdong Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1876690/publications.pdf

Version: 2024-02-01

471509 477307 1,011 48 17 29 citations h-index g-index papers 49 49 49 1240 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Crosstalk between PC12 cells and endothelial cells in an artificial neurovascular niche constructed by a dual-functionalized self-assembling peptide nanofiber hydrogel. Nano Research, 2022, 15, 1433-1445.	10.4	10
2	Aligned fibrin/functionalized self-assembling peptide interpenetrating nanofiber hydrogel presenting multi-cues promotes peripheral nerve functional recovery. Bioactive Materials, 2022, 8, 529-544.	15.6	35
3	Structural alignment guides oriented migration and differentiation of endogenous neural stem cells for neurogenesis in brain injury treatment. Biomaterials, 2022, 280, 121310.	11.4	20
4	ROS-responsive Ag-TiO2 hybrid nanorods for enhanced photodynamic therapy of breast cancer and antimicrobial applications. Journal of Science: Advanced Materials and Devices, 2022, 7, 100417.	3.1	8
5	Robust and Versatile Cellulose Aerogel with a Self-Wettable Surface for Efficient Dual Separations of Oil-in-Water and Water-in-Oil Emulsions. ACS Applied Polymer Materials, 2022, 4, 1657-1665.	4.4	15
6	Manganese Phosphate-Doxorubicin-Based Nanomedicines Using Mimetic Mineralization for Cancer Chemotherapy. ACS Biomaterials Science and Engineering, 2022, 8, 1930-1941.	5.2	6
7	Mitochondria-Targeted Photodynamic Cancer Therapy of Nanoscale Liposome-Encapsulating Boron Dipyrromethene Photosensitizers Conjugated with Pyridine Cations. ACS Applied Nano Materials, 2022, 5, 5459-5469.	5.0	6
8	Facile Synthesis of Multifunctional Magnetoplasmonic Au-MnO Hybrid Nanocomposites for Cancer Theranostics. Nanomaterials, 2022, 12, 1370.	4.1	7
9	The sodium hyaluronate microspheres fabricated by solution drying for transcatheter arterial embolization. Journal of Materials Chemistry B, 2022, 10, 4105-4114.	5.8	3
10	A biomineralized Prussian blue nanotherapeutic for enhanced cancer photothermal therapy. Journal of Materials Chemistry B, 2022, 10, 4889-4896.	5.8	10
11	Biocompatible magnetic hydroxyapatite Fe3O4-HAp nanocomposites for T1-magnetic resonance imaging guided photothermal therapy of breast cancer. Materials Today Communications, 2022, 31, 103734.	1.9	5
12	Antiviral effects of coinage metal-based nanomaterials to combat COVID-19 and its variants. Journal of Materials Chemistry B, 2022, 10, 5323-5343.	5.8	12
13	Magnetic hydroxyapatite nanocomposites: The advances from synthesis to biomedical applications. Materials and Design, 2021, 197, 109269.	7.0	43
14	Inorganic material based macrophage regulation for cancer therapy: basic concepts and recent advances. Biomaterials Science, 2021, 9, 4568-4590.	5.4	28
15	Polymer-grafted hollow mesoporous silica nanoparticles integrated with microneedle patches for glucose-responsive drug delivery. Frontiers of Materials Science, 2021, 15, 98-112.	2.2	21
16	Characterization, antioxidant activity, and biocompatibility of selenium nanoparticle-loaded thermosensitive chitosan hydrogels. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1370-1385.	3.5	9
17	Synergistic photodynamic and photothermal therapy of BODIPY-conjugated hyaluronic acid nanoparticles. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 2028-2045.	3.5	15
18	Hierarchical nano-to-molecular disassembly of boron dipyrromethene nanoparticles for enhanced tumor penetration and activatable photodynamic therapy. Biomaterials, 2021, 275, 120945.	11.4	18

#	Article	IF	Citations
19	A multi-modal delivery strategy for spinal cord regeneration using a composite hydrogel presenting biophysical and biochemical cues synergistically. Biomaterials, 2021, 276, 120971.	11.4	32
20	siRNA-Loaded Hydroxyapatite Nanoparticles for KRAS Gene Silencing in Anti-Pancreatic Cancer Therapy. Pharmaceutics, 2021, 13, 1428.	4.5	17
21	Facile synthesis of Mn doped TiO2 rhombic nanocomposites for enhanced T1-Magnetic resonance imaging and photodynamic therapy. Materials Research Bulletin, 2021, 144, 111481.	5.2	16
22	Multivalent effects of heptamannosylated \hat{l}^2 -cyclodextrins on macrophage polarization to accelerate wound healing. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112071.	5.0	5
23	Facile synthesis of biocompatible magnetic titania nanorods for <i>T</i> ₁ -magnetic resonance imaging and enhanced phototherapy of cancers. Journal of Materials Chemistry B, 2021, 9, 6623-6633.	5.8	13
24	Silk Fibroin/Collagen Blended Membrane Fabricated via a Green Papermaking Method for Potential Guided Bone Regeneration Application: <i>In Vitro</i> and <i>In Vivo</i> Evaluation. ACS Biomaterials Science and Engineering, 2021, 7, 5788-5797.	5.2	16
25	Biosilicified oncolytic adenovirus for cancer viral gene therapy. Biomaterials Science, 2020, 8, 5317-5328.	5.4	13
26	Glucose- and pH-Responsive Supramolecular Polymer Vesicles Based on Host–Guest Interaction for Transcutaneous Delivery of Insulin. ACS Applied Bio Materials, 2020, 3, 6376-6383.	4.6	19
27	Injectable hydrogel systems with multiple biophysical and biochemical cues for bone regeneration. Biomaterials Science, 2020, 8, 2537-2548.	5.4	50
28	Poly(amidoamine)-modified mesoporous silica nanoparticles as a mucoadhesive drug delivery system for potential bladder cancer therapy. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110832.	5.0	59
29	Mineralization of calcium phosphate controlled by biomimetic self-assembled peptide monolayers via surface electrostatic potentials. Bioactive Materials, 2020, 5, 387-397.	15.6	26
30	Microskinâ€Inspired Injectable MSCâ€Laden Hydrogels for Scarless Wound Healing with Hair Follicles. Advanced Healthcare Materials, 2020, 9, e2000041.	7.6	48
31	Multifunctional nanoparticles as photosensitizer delivery carriers for enhanced photodynamic cancer therapy. Materials Science and Engineering C, 2020, 115, 111099.	7.3	53
32	Laminin functionalized biomimetic apatite to regulate the adhesion and proliferation behaviors of neural stem cells. International Journal of Nanomedicine, 2018, Volume 13, 6223-6233.	6.7	12
33	Biomimetic apatite formed on cobalt-chromium alloy: A polymer-free carrier for drug eluting stent. Colloids and Surfaces B: Biointerfaces, 2017, 151, 156-164.	5.0	10
34	Biomimetic synthesis of sericin and silica hybrid colloidosomes for stimuli-responsive anti-cancer drug delivery systems. Colloids and Surfaces B: Biointerfaces, 2017, 151, 102-111.	5.0	18
35	<scp>T</scp> owards understanding the distribution and tumor targeting of sericin regulated spherical calcium phosphate nanoparticles. Microscopy Research and Technique, 2017, 80, 321-330.	2.2	8
36	Silk fibroin membrane used for guided bone tissue regeneration. Materials Science and Engineering C, 2017, 70, 148-154.	7.3	76

3

#	Article	IF	CITATIONS
37	Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells. International Journal of Molecular Sciences, 2016, 17, 639.	4.1	10
38	In Vivo Bio-distribution and Efficient Tumor Targeting of Gelatin/Silica Nanoparticles for Gene Delivery. Nanoscale Research Letters, 2016, 11, 195.	5.7	16
39	Calcium phosphate nanoparticles-based systems for siRNA delivery. International Journal of Energy Production and Management, 2016, 3, 187-195.	3.7	42
40	Hydrothermal fabrication of porous hollow hydroxyapatite microspheres for a drug delivery system. Materials Science and Engineering C, 2016, 62, 166-172.	7.3	90
41	Polyethyleneimine-modified calcium carbonate nanoparticles for <i>p53</i> gene delivery. International Journal of Energy Production and Management, 2016, 3, 57-63.	3.7	11
42	Immobilizing osteogenic growth peptide with and without fibronectin on a titanium surface: effects of loading methods on mesenchymal stem cell differentiation. International Journal of Nanomedicine, 2015, 10, 283.	6.7	22
43	Differential Sensitivities of Fast- and Slow-Cycling Cancer Cells to Inosine Monophosphate Dehydrogenase 2 Inhibition by Mycophenolic Acid. Molecular Medicine, 2015, 21, 792-802.	4.4	14
44	The anti-tumor effect of p53 gene-loaded hydroxyapatite nanoparticles in vitro and in vivo. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	9
45	Calcium carbonate microparticles used as a gene vector for delivering <i>p53</i> gene into cancer cells. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2312-2318.	4.0	12
46	Porous composite scaffolds of hydroxyapatite/silk fibroin via twoâ€step method. Polymers for Advanced Technologies, 2011, 22, 909-914.	3.2	20
47	A novel method to prepare mineralized fibroin fiber. Frontiers of Materials Science in China, 2007, 1, 243-246.	0.5	0
48	Effects of pH and initial Ca2+â^'H2PO4 â^' concentration on fibroin mineralization. Frontiers of Materials Science in China, 2007, 1, 258-262.	0.5	2