Qing Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1876634/publications.pdf

Version: 2024-02-01

147801 189892 2,841 84 31 50 citations h-index g-index papers 87 87 87 3080 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An electrochemical amplification strategy based on the ferrocene functionalized cuprous oxide superparticles for the detection of NSE. Talanta, 2022, 236, 122865.	5.5	9
2	A dual-signal output electrochemical immunosensor based on Au–MoS2/MOF catalytic cycle amplification strategy for neuron-specific enolase ultrasensitive detection. Biosensors and Bioelectronics, 2022, 195, 113648.	10.1	38
3	Electrochemical immunosensor based on hollow porous Pt skin AgPt alloy/NGR as a dual signal amplification strategy for sensitive detection of Neuron-specific enolase. Biosensors and Bioelectronics, 2022, 197, 113779.	10.1	26
4	An efficient electrochemical immunosensor for Alpha-Fetoprotein detection based on the CoFe prussian blue analog combined PdAg hybrid nanodendrites. Bioelectrochemistry, 2022, 145, 108080.	4.6	8
5	Highly diastereoselective synthesis of an octahydro-1 <i>H</i> -cyclpenta[<i>c</i>)]pyridine skeletonvia a Pd/Au-relay catalyzed reaction of (<i>Z</i>)-1-iodo-1,6-diene and alkyne. Organic Chemistry Frontiers, 2022, 9, 3186-3191.	4.5	7
6	Pd/Et ₃ N·HI-Catalyzed Intramolecular C–H Alkylation to Access [<i>a</i>)-Annulated Indoles via Highly Regioselective Ring-Opening of Epoxides. Journal of Organic Chemistry, 2022, 87, 7995-8004.	3.2	3
7	Heterostructure photoelectrochemical immunosensor based on flower-like refraction structure Cd-Znln2.2Sy sensitized 2D hexagonal SnS2 nanoplates for CA242 detection. Sensors and Actuators B: Chemical, 2022, 367, 132186.	7.8	4
8	A sandwich-type electrochemical immunosensor based on Au@Pd nanodendrite functionalized MoO2 nanosheet for highly sensitive detection of HBsAg. Bioelectrochemistry, 2021, 138, 107713.	4.6	13
9	Electrochemical immunosensor based on Au/Co-BDC/MoS2 and DPCN/MoS2 for the detection of cardiac troponin I. Biosensors and Bioelectronics, 2021, 175, 112883.	10.1	41
10	Palladium-catalyzed cascade 5-exo-trig radical cyclization/aromatic C–H alkylation with unactivated alkyl iodides. Organic and Biomolecular Chemistry, 2021, 19, 2676-2680.	2.8	2
11	Pdâ€Catalyzed Cascade Metalloâ€Ene Cyclization/Metalloâ€Carbene Coupling of Allenamides. European Journal of Organic Chemistry, 2021, 2021, 1538-1542.	2.4	5
12	Recent Progress in Palladiumâ€Catalyzed Radical Reactions. Advanced Synthesis and Catalysis, 2021, 363, 1527-1558.	4.3	30
13	Simultaneous electrochemical determination of two hepatitis B antigens using graphene-SnO2 hybridized with sea urchin–like bimetallic nanoparticles. Mikrochimica Acta, 2021, 188, 109.	5.0	4
14	Palladium/Norbornene Catalyzed <i>ortho</i> Amination/Cyclization of Aryl Iodide: Process to 3-Methyl-indole Derivates and Controllable Reductive Elimination against the Second Amination. Organic Letters, 2021, 23, 2988-2993.	4.6	16
15	A Label-Free Electrochemical Immunosensor Based on AuAgPt NDs Functionalized MoO ₂ Nanosheets for Highly Sensitive Detection of AFP. Journal of the Electrochemical Society, 2021, 168, 057506.	2.9	4
16	Ligand-Regulated Palladium-Catalyzed Regiodivergent Hydroarylation of the Distal Double Bond of Allenamides with Aryl Boronic Acid. Journal of Organic Chemistry, 2021, 86, 13276-13288.	3.2	6
17	The preparation of hollow AgPt@Pt core-shell nanoparticles loaded on polypyrrole nanosheet modified electrode and its application in immunosensor. Bioelectrochemistry, 2020, 131, 107352.	4.6	15
18	A Signal Amplification Strategy of CuPtRh CNB-Embedded Ammoniated Ti ₃ C ₂ MXene for Detecting Cardiac Troponin I by a Sandwich-Type Electrochemical Immunosensor. ACS Applied Bio Materials, 2020, 3, 377-384.	4.6	54

#	Article	IF	CITATIONS
19	Mulberry-like Au@PtPd porous nanorods composites as signal amplifiers for sensitive detection of CEA. Biosensors and Bioelectronics, 2020, 149, 111842.	10.1	50
20	Ultrasensitive detection of chloramphenicol using electrochemical aptamer sensor: A mini review. Electrochemistry Communications, 2020, 120, 106835.	4.7	46
21	Separation of Biological Events from the Photoanode: Toward the Ferricyanide-Mediated Redox Cyclic Photoelectrochemical System of an Integrated Photoanode and Photocathode. ACS Sensors, 2020, 5, 3540-3546.	7.8	23
22	Palladium-catalyzed intramolecular aerobic alkenylhydroxylation of allenamides with alkenyl iodides. Organic Chemistry Frontiers, 2020, 7, 3880-3886.	4.5	15
23	"Gold-plated―IRMOF-3 and sea cucumber-like Pd@PtRh SNRs based sandwich-type immunosensor for dual-mode detection of PCT. Biosensors and Bioelectronics, 2020, 170, 112667.	10.1	25
24	Recent advances in transition metal migration involving reactions. Organic Chemistry Frontiers, 2020, 7, 3530-3556.	4.5	43
25	Label-Free Amperometric Immunosensor Based on Au@Pt DNPs/MoSe2@MoS2 with Multiple Signal Amplification Capabilities for Squamous Cell Carcinoma Antigen Detection. Journal of the Electrochemical Society, 2020, 167, 027547.	2.9	3
26	1,2,4â€Oxadiazole ring–containing pyridylpyrazoleâ€4â€carboxamides: Synthesis and evaluation as novel insecticides of the anthranilic diamide family. Journal of Heterocyclic Chemistry, 2020, 57, 1981-1992.	2.6	6
27	A label-free immunosensor for the sensitive detection of hepatitis B e antigen based on PdCu tripod functionalized porous graphene nanoenzymes. Bioelectrochemistry, 2020, 133, 107461.	4.6	21
28	Nickelâ€Catalyzed 1,1â€Difluoroethylation of (Hetero)aryl Halides with 1,1â€Difluoroethyl Chloride (CH 3 CF) Tj	ETQq0 0 (0 rgBT /Overlo
29	Electrochemical Immunosensors for Sensitive Detection of Neuron-Specific Enolase Based on Small-Size Trimetallic Au@Pd^Pt Nanocubes Functionalized on Ultrathin MnO ₂ Nanosheets as Signal Labels. ACS Biomaterials Science and Engineering, 2020, 6, 1418-1427.	5. 2	48
30	A Sandwich-Type Electrochemical Immunosensor based on Pd Nanocubes Functionalized MoO ₂ Nanospheres for Highly Sensitive Detection of CEA. Journal of the Electrochemical Society, 2020, 167, 167526.	2.9	3
31	Label-Free Electrochemical Immunosensor Based on MoS ₂ @m-SiO ₂ /Ag as the Signal Amplification Platform for Sensitive Detection of CA15-3. Journal of the Electrochemical Society, 2020, 167, 137512.	2.9	5
32	A label-free immunosensor based on PtPd NCs@MoS2 nanoenzymes for hepatitis B surface antigen detection. Biosensors and Bioelectronics, 2019, 142, 111556.	10.1	61
33	An organocatalytic method for constructing pyrroles <i>via</i> the cycloisomerisation of <i>Z</i> -1-iodo-4- <i>N</i> -methylbenzenesulfonyl-1,6-enynes. Organic and Biomolecular Chemistry, 2019, 17, 7669-7673.	2.8	7
34	Amperometric immunoassay for the carcinoembryonic antigen by using a peroxidase mimic consisting of palladium nanospheres functionalized with glutathione-capped gold nanoparticles on graphene oxide. Mikrochimica Acta, 2019, 186, 693.	5.0	9
35	1,1-Difluoroethyl chloride (CH ₃ CF ₂ Cl), a novel difluoroalkylating reagent for 1,1-difluoroethylation of arylboronic acids. RSC Advances, 2019, 9, 28409-28413.	3.6	7
36	Electrochemical immunosensor based on MoS2 NFs/Au@AgPt YNCs as signal amplification label for sensitive detection of CEA. Biosensors and Bioelectronics, 2019, 142, 111580.	10.1	69

#	Article	IF	CITATIONS
37	Ultrasensitive sandwich-type immunosensor for cardiac troponin I based on enhanced electrocatalytic reduction of H $<$ sub $>$ 2 $<$ 1sub $>$ 0 $<$ sub $>$ 2 $<$ 1sub $>$ 1sub $>$ 2 $<$ 1sub $>$ 1sub $>$ 2 $<$ 1sub $>$ 201sub $>$	5.8	29
38	Pdâ€Catalyzed Tandem Coupling Reaction of 2â€ <i>gem</i> â€Dibromovinylanilines and <i>N</i> â€Tosylhydrazones to Construct 2â€(1â€phenylvinyl)â€indoles. Advanced Synthesis and Catalysis, 2019, 361, 3599-3604.	4.3	9
39	A palladium-catalyzed regiocontrollable hydroarylation reaction of allenamides with B ₂ pin ₂ /H ₂ 0. Chemical Communications, 2019, 55, 4355-4358.	4.1	18
40	Sensitive amperometric immunosensor with improved electrocatalytic Au@Pd urchin-shaped nanostructures for human epididymis specific protein 4 antigen detection. Analytica Chimica Acta, 2019, 1069, 117-125.	5.4	32
41	Palladiumâ€Catalyzed Cycloisomerization of (Z)â€1â€lodoâ€1,6â€dienes to 3â€Azaâ€bicyclo[4.1.0]heptâ€2â€e Journal of Organic Chemistry, 2019, 8, 840-843.	nes. Asian 2.7	6
42	Sandwich-type electrochemical immunosensor based on Au@Pt DNRs/NH2-MoSe2 NSs nanocomposite as signal amplifiers for the sensitive detection of alpha-fetoprotein. Bioelectrochemistry, 2019, 128, 140-147.	4.6	34
43	Palladium-catalyzed intermolecular $[4 + 2]$ formal cycloaddition with $(\langle i \rangle Z \langle i \rangle)$ -3-iodo allylic nucleophiles and allenamides. Organic and Biomolecular Chemistry, 2019, 17, 2651-2656.	2.8	19
44	Palladiumâ€Catalyzed Domino Process to Construct 2,3,9,9 <i>a</i> aa€Tetrahydroâ€1 <i>H</i> a€Fluorene Derivatives:Transient Ïfâ€Alkylpalladium(II) Complex Mediated C(sp ²)â€H Bond Activation. Asian Journal of Organic Chemistry, 2019, 8, 2201-2204.	2.7	4
45	A sandwich-type electrochemical immunosensor based on RhPt NDs/NH2-GS and Au NPs/PPy NS for quantitative detection hepatitis B surface antigen. Bioelectrochemistry, 2019, 126, 92-98.	4.6	45
46	Nitrogen-doped fluorescent carbon dots for highly sensitive and selective detection of tannic acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 210, 111-119.	3.9	31
47	A sensitive label-free immunosensor for alpha fetoprotein detection using platinum nanodendrites loaded on functional MoS2 hybridized polypyrrole nanotubes as signal amplifier. Journal of Electroanalytical Chemistry, 2019, 835, 197-204.	3.8	25
48	Label-free immunosensors based on a novel multi-amplification signal strategy of TiO2-NGO/Au@Pd hetero-nanostructures. Biosensors and Bioelectronics, 2019, 127, 174-180.	10.1	42
49	Sandwich-type electrochemical immunosensor for sensitive detection of CEA based on the enhanced effects of Ag NPs@CS spaced Hemin/rGO. Biosensors and Bioelectronics, 2019, 126, 785-791.	10.1	87
50	Transitionâ€Metalâ€Catalyzed Cyanation by Using an Electrophilic Cyanating Agent, <i>N</i> â€Cyanoâ€ <i>N</i> â€phenylâ€ <i>p</i> â€toluenesulfonamide (NCTS). Chemistry - an Asian Journal, 2018 482-495.	,3.3,	51
51	Sandwich-type electrochemical immunosensor based on Au@Ag supported on functionalized phenolic resin microporous carbon spheres for ultrasensitive analysis of l_{\pm} -fetoprotein. Biosensors and Bioelectronics, 2018, 106, 142-148.	10.1	74
52	A label-free electrochemical immunosensor based on the novel signal amplification system of AuPdCu ternary nanoparticles functionalized polymer nanospheres. Biosensors and Bioelectronics, 2018, 103, 151-157.	10.1	63
53	Palladiumâ€Catalyzed Direct Oxidative Esterification of Indoles at the C3 Position: A Novel Prospect for C(sp ^{)â^H Acyloxylation. Asian Journal of Organic Chemistry, 2018, 7, 341-345.}	2.7	12
54	Recent Advances in Palladiumâ€Catalyzed Carboxylation with CO ₂ . European Journal of Organic Chemistry, 2018, 2018, 696-713.	2.4	38

#	Article	IF	CITATIONS
55	An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of echinoidea-shaped Au@Ag-Cu2O nanoparticles for prostate specific antigen detection. Biosensors and Bioelectronics, 2018, 99, 450-457.	10.1	112
56	Palladium-catalyzed heck-type cascade cyclization of (<i>Z</i>)-1-iodo-1,6-dienes with <i>N</i> -tosyl hydrazones. Organic and Biomolecular Chemistry, 2018, 16, 7356-7360.	2.8	7
57	Recent advance in the synthesis of (1,1-difluoroethyl)arenes. Journal of Fluorine Chemistry, 2018, 216, 102-106.	1.7	13
58	A sandwich-type amperometric immunosensor fabricated by Au@Pd NDs/Fe2+-CS/PPy NTs and Au NPs/NH2-GS to detect CEA sensitively via two detection methods. Biosensors and Bioelectronics, 2018, 122, 231-238.	10.1	50
59	Palladium/Copper Coâ€Catalyzed Cascade Metalloâ€ene/Sonogashira Coupling Reaction of Allenamides. Asian Journal of Organic Chemistry, 2018, 7, 1793-1796.	2.7	12
60	Transition Metal atalyzed Reactions Involving Oximes. Advanced Synthesis and Catalysis, 2017, 359, 710-771.	4.3	110
61	An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification system of double-deck gold film and thionine unite with platinum nanowire inlaid globular SBA-15 microsphere. Biosensors and Bioelectronics, 2017, 91, 424-430.	10.1	21
62	Palladium-catalyzed cascade metallo-ene/Suzuki coupling reaction of allenamides. Chemical Communications, 2017, 53, 3138-3141.	4.1	34
63	Frontispiece: Transitionâ€Metalâ€Catalyzed Electrophilic Amination: Application of <i>O</i> â€Benzoylhydroxylamines in the Construction of the Câ°N Bond. Chemistry - A European Journal, 2017, 23, .	3.3	2
64	Palladium-catalyzed intramolecular reductive olefin hydrocarbonation: benzylic hydrogen serving as a new hydrogen donor. Chemical Communications, 2017, 53, 4903-4906.	4.1	16
65	Palladium-Catalyzed Cyclization-Heck Reaction of Allenamides: An Approach to 3-Methylene-5-phenyl-1,2,3,4-tetrahydropyridine Derivatives. Organic Letters, 2017, 19, 86-89.	4.6	36
66	Copper(<scp>i</scp>)-catalyzed 5-exo-trig radical cyclization/borylation of alkyl halides: access to functionalized pyrrolidine derivatives. Organic and Biomolecular Chemistry, 2017, 15, 8508-8512.	2.8	20
67	Ultrasensitive amperometric immunosensor for PSA detection based on Cu2O@CeO2-Au nanocomposites as integrated triple signal amplification strategy. Biosensors and Bioelectronics, 2017, 87, 630-637.	10.1	102
68	Transitionâ€Metalâ€Catalyzed Electrophilic Amination: Application of <i>O</i> â€Benzoylhydroxylamines in the Construction of the Câ°N Bond. Chemistry - A European Journal, 2017, 23, 2481-2511.	3.3	115
69	A novel label-free electrochemical immunosensor based on functionalized nitrogen-doped graphene quantum dots for carcinoembryonic antigen detection. Biosensors and Bioelectronics, 2017, 90, 31-38.	10.1	165
70	Pd-Catalyzed oxidative isomerization of propargylic acetates: highly efficient access to α-acetoxyenones via alkenyl Csp2–O bond-forming reductive elimination from PdIV. Chemical Communications, 2016, 52, 10644-10647.	4.1	10
71	Palladium-Catalyzed 6-Endo Selective Alkyl-Heck Reactions: Access to 5-Phenyl-1,2,3,6-tetrahydropyridine Derivatives. Organic Letters, 2016, 18, 3774-3777.	4.6	47
72	An ultrasensitive label-free electrochemical immunosensor based on signal amplification strategy of multifunctional magnetic graphene loaded with cadmium ions. Scientific Reports, 2016, 6, 21281.	3.3	20

#	Article	IF	CITATIONS
73	An ultrasensitive sandwich-type electrochemical immunosensor based on functionalized mesoporous carbon for IgG detection. RSC Advances, 2016, 6, 31824-31830.	3.6	10
74	An optionality further amplification of an sandwich-type electrochemical immunosensor based on biotin–streptavidin–biotin strategy for detection of alpha fetoprotein. RSC Advances, 2016, 6, 24373-24380.	3.6	16
7 5	Ultrasensitive non-enzymatic immunosensor for carcino-embryonic antigen based on palladium hybrid vanadium pentoxide/multiwalled carbon nanotubes. Biosensors and Bioelectronics, 2016, 77, 1104-1111.	10.1	58
76	A label-free amperometric immunosensor for the detection of carcinoembryonic antigen based on novel magnetic carbon and gold nanocomposites. RSC Advances, 2015, 5, 19961-19969.	3.6	22
77	Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions. Scientific Reports, 2015, 5, 11949.	3.3	112
78	Synthesis of Ultrathin Faceâ€Centeredâ€Cubic Au@Pt and Au@Pd Core–Shell Nanoplates from Hexagonalâ€Closeâ€Packed Au Square Sheets. Angewandte Chemie - International Edition, 2015, 54, 5672-5676.	13.8	111
79	Palladium-catalyzed atom transfer radical cyclization of unactivated alkyl iodide. Organic and Biomolecular Chemistry, 2012, 10, 7274.	2.8	41
80	Palladium-Catalyzed Cycloisomerizations of (<i>Z</i>)-1-lodo-1,6-dienes: Iodine Atom Transfer and Mechanistic Insight to Alkyl Iodide Reductive Elimination. Journal of the American Chemical Society, 2011, 133, 6187-6193.	13.7	163
81	Palladium-catalyzed Heck-type reaction of oxime ether bearing a pendant vinyl iodide moiety. Chemical Communications, 2011, 47, 12206.	4.1	22
82	Cyclization–oxidation of 1,6-enyne derivatived from Baylis–Hillman adducts via Pd(II)/Pd(IV)-catalyzed reactions: stereoselective synthesis of multi-substituted bicyclo[3.1.0] hexanes and insight into reaction pathways. Tetrahedron Letters, 2008, 49, 6924-6928.	1.4	34
83	Synthesis, insecticidal activities, and structure–activity relationships of 1,3,4â€oxadiazoleâ€ringâ€containing pyridylpyrazoleâ€4â€carboxamides as novel insecticides of the anthranilic diamide family. Journal of Heterocyclic Chemistry, 0, , .	2.6	5
84	A palladium/Et3N·HI-catalyzed highly selective 7-endo alkyl-Heck-type reaction of epoxides and a DFT study on the mechanism. Organic Chemistry Frontiers, 0, , .	4.5	2