Nick Golding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1876616/publications.pdf Version: 2024-02-01

NICK COLDINC

#	Article	IF	CITATIONS
1	Modelling temperatureâ€driven changes in species associations across freshwater communities. Global Change Biology, 2022, 28, 86-97.	9.5	5
2	A fractional land use change model for ecological applications. Environmental Modelling and Software, 2022, 147, 105258.	4.5	12
3	Defining and evaluating predictions of joint species distribution models. Methods in Ecology and Evolution, 2021, 12, 394-404.	5.2	30
4	Assessing biophysical and socio-economic impacts of climate change on regional avian biodiversity. Scientific Reports, 2021, 11, 3304.	3.3	9
5	Ensemble model for estimating continental-scale patterns of human movement: a case study of Australia. Scientific Reports, 2021, 11, 4806.	3.3	4
6	Doubleâ€ŧagging scores of seabirds reveals that lightâ€level geolocator accuracy is limited by species idiosyncrasies and equatorial solar profiles. Methods in Ecology and Evolution, 2021, 12, 2243-2255.	5.2	27
7	mixchar: An R Package for the Deconvolution of Thermal Decay Curves. Journal of Open Research Software, 2021, 9, .	5.9	1
8	Data Integration for Large-Scale Models of Species Distributions. Trends in Ecology and Evolution, 2020, 35, 56-67.	8.7	205
9	Reconstructing the early global dynamics of under-ascertained COVID-19 cases and infections. BMC Medicine, 2020, 18, 332.	5.5	129
10	Modelling geospatial distributions of the triatomine vectors of Trypanosoma cruzi in Latin America. PLoS Neglected Tropical Diseases, 2020, 14, e0008411.	3.0	13
11	Multiâ€output Gaussian processes for species distribution modelling. Methods in Ecology and Evolution, 2020, 11, 1587-1598.	5.2	19
12	<scp>steps</scp> : Software for spatially and temporally explicit population simulations. Methods in Ecology and Evolution, 2020, 11, 596-603.	5.2	15
13	Early analysis of the Australian COVID-19 epidemic. ELife, 2020, 9, .	6.0	66
14	Mapping 123 million neonatal, infant and child deaths between 2000 and 2017. Nature, 2019, 574, 353-358.	27.8	161
15	The current and future global distribution and population at risk of dengue. Nature Microbiology, 2019, 4, 1508-1515.	13.3	645
16	Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature Microbiology, 2019, 4, 854-863.	13.3	699
17	Utilizing general human movement models to predict the spread of emerging infectious diseases in resource poor settings. Scientific Reports, 2019, 9, 5151.	3.3	89
18	A comparison of joint species distribution models for presence–absence data. Methods in Ecology and Evolution, 2019, 10, 198-211.	5.2	58

#	Article	IF	CITATIONS
19	greta: simple and scalable statistical modelling in R. Journal of Open Source Software, 2019, 4, 1601.	4.6	31
20	Existing and potential infection risk zones of yellow fever worldwide: a modelling analysis. The Lancet Global Health, 2018, 6, e270-e278.	6.3	104
21	Managing the timing and speed of vehicles reduces wildlife-transport collision risk. Transportation Research, Part D: Transport and Environment, 2018, 59, 86-95.	6.8	16
22	The <scp>zoon r</scp> package for reproducible and shareable species distribution modelling. Methods in Ecology and Evolution, 2018, 9, 260-268.	5.2	29
23	Mapping the geographical distribution of podoconiosis in Cameroon using parasitological, serological, and clinical evidence to exclude other causes of lymphedema. PLoS Neglected Tropical Diseases, 2018, 12, e0006126.	3.0	40
24	The contemporary distribution of Trypanosoma cruzi infection in humans, alternative hosts and vectors. Scientific Data, 2017, 4, 170050.	5.3	39
25	Spread of yellow fever virus outbreak in Angola and the Democratic Republic of the Congo 2015–16: a modelling study. Lancet Infectious Diseases, The, 2017, 17, 330-338.	9.1	185
26	Mapping under-5 and neonatal mortality in Africa, 2000–15: a baseline analysis for the Sustainable Development Goals. Lancet, The, 2017, 390, 2171-2182.	13.7	214
27	Local, national, and regional viral haemorrhagic fever pandemic potential in Africa: a multistage analysis. Lancet, The, 2017, 390, 2662-2672.	13.7	80
28	Global yellow fever vaccination coverage from 1970 to 2016: an adjusted retrospective analysis. Lancet Infectious Diseases, The, 2017, 17, 1209-1217.	9.1	128
29	Mapping the spatial distribution of the Japanese encephalitis vector, Culex tritaeniorhynchus Giles, 1901 (Diptera: Culicidae) within areas of Japanese encephalitis risk. Parasites and Vectors, 2017, 10, 148.	2.5	45
30	Estimating the number of cases of podoconiosis in Ethiopia using geostatistical methods. Wellcome Open Research, 2017, 2, 78.	1.8	36
31	How will climate change pathways and mitigation options alter incidence of vector-borne diseases? A framework for leishmaniasis in South and Meso-America. PLoS ONE, 2017, 12, e0183583.	2.5	37
32	Improving the built environment in urban areas to control <i>Aedes aegypti</i> -borne diseases. Bulletin of the World Health Organization, 2017, 95, 607-608.	3.3	60
33	Global distribution and environmental suitability for chikungunya virus, 1952 to 2015. Eurosurveillance, 2016, 21, .	7.0	141
34	Mapping global environmental suitability for Zika virus. ELife, 2016, 5, .	6.0	299
35	Estimating Geographical Variation in the Risk of Zoonotic Plasmodium knowlesi Infection in Countries Eliminating Malaria. PLoS Neglected Tropical Diseases, 2016, 10, e0004915.	3.0	76
36	Fast and flexible Bayesian species distribution modelling using Gaussian processes. Methods in Ecology and Evolution, 2016, 7, 598-608.	5.2	87

#	Article	IF	CITATIONS
37	Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nature Microbiology, 2016, 1, .	13.3	704
38	Predicting the geographical distributions of the macaque hosts and mosquito vectors of Plasmodium knowlesi malaria in forested and non-forested areas. Parasites and Vectors, 2016, 9, 242.	2.5	84
39	Modelling the relative abundance of the primary African vectors of malaria before and after the implementation of indoor, insecticide-based vector control. Malaria Journal, 2016, 15, 142.	2.3	48
40	Quantifying the Risk of Introduction of West Nile Virus into Great Britain by Migrating Passerine Birds. Transboundary and Emerging Diseases, 2016, 63, e347-e359.	3.0	16
41	Progress and Challenges in Infectious Disease Cartography. Trends in Parasitology, 2016, 32, 19-29.	3.3	85
42	Updates to the zoonotic niche map of Ebola virus disease in Africa. ELife, 2016, 5, .	6.0	61
43	Identifying biotic interactions which drive the spatial distribution of a mosquito community. Parasites and Vectors, 2015, 8, 367.	2.5	35
44	Global database of matched Plasmodium falciparum and P. vivax incidence and prevalence records from 1985–2013. Scientific Data, 2015, 2, 150012.	5.3	22
45	Integrating vector control across diseases. BMC Medicine, 2015, 13, 249.	5.5	98
46	Tracking the distribution and impacts of diseases with biological records and distribution modelling. Biological Journal of the Linnean Society, 2015, 115, 664-677.	1.6	36
47	The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. ELife, 2015, 4, e08347.	6.0	1,428
48	Defining the relationship between Plasmodium vivax parasite rate and clinical disease. Malaria Journal, 2015, 14, 191.	2.3	12
49	Mapping the zoonotic niche of Marburg virus disease in Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 366-378.	1.8	99
50	Mapping the zoonotic niche of Lassa fever in Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 483-492.	1.8	111
51	Emergence and potential for spread of Chikungunya virus in Brazil. BMC Medicine, 2015, 13, 102.	5.5	369
52	The many projected futures of dengue. Nature Reviews Microbiology, 2015, 13, 230-239.	28.6	145
53	The global distribution of Crimean-Congo hemorrhagic fever. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 503-513.	1.8	193
54	Prioritising Infectious Disease Mapping. PLoS Neglected Tropical Diseases, 2015, 9, e0003756.	3.0	30

#	Article	IF	CITATIONS
55	Mapping and Modelling the Geographical Distribution and Environmental Limits of Podoconiosis in Ethiopia. PLoS Neglected Tropical Diseases, 2015, 9, e0003946.	3.0	62
56	Global distribution maps of the leishmaniases. ELife, 2014, 3, .	6.0	203
57	Mapping the zoonotic niche of Ebola virus disease in Africa. ELife, 2014, 3, e04395.	6.0	328
58	Defining the Geographical Range of the Plasmodium knowlesi Reservoir. PLoS Neglected Tropical Diseases, 2014, 8, e2780.	3.0	84
59	Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia. Nature Communications, 2014, 5, 4116.	12.8	145
60	The global distribution and transmission limits of lymphatic filariasis: past and present. Parasites and Vectors, 2014, 7, 466.	2.5	96
61	Understanding coâ€occurrence by modelling species simultaneously with a Joint Species Distribution Model (<scp>JSDM</scp>). Methods in Ecology and Evolution, 2014, 5, 397-406.	5.2	477
62	Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasites and Vectors, 2014, 7, 338.	2.5	280
63	Towards the PCR-based identification of Palaearctic Culicoides biting midges (Diptera:) Tj ETQq1 1 0.784314 rgBT Avaritia. Parasites and Vectors, 2014, 7, 223.	/Overlock 2.5	10 Tf 50 42 19
64	Geographical variation in Plasmodium vivax relapse. Malaria Journal, 2014, 13, 144.	2.3	223
65	A comprehensive database of the geographic spread of past human Ebola outbreaks. Scientific Data, 2014, 1, 140042.	5.3	39
66	Global database of leishmaniasis occurrence locations, 1960–2012. Scientific Data, 2014, 1, 140036.	5.3	43
67	Larval development and emergence sites of farmâ€associated <i>Culicoides</i> in the United Kingdom. Medical and Veterinary Entomology, 2013, 27, 441-449.	1.5	64
68	Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasites and Vectors, 2013, 6, 351.	2.5	357
69	Measurement of the Infection and Dissemination of Bluetongue Virus in Culicoides Biting Midges Using a Semi-Quantitative RT-PCR Assay and Isolation of Infectious Virus. PLoS ONE, 2013, 8, e70800.	2.5	50
70	Investigation of Diel Activity of <i>Culicoides</i> Biting Midges (Diptera: Ceratopogonidae) in the United Kingdom by Using a Vehicle-Mounted Trap. Journal of Medical Entomology, 2012, 49, 757-765.	1.8	27
71	Collection ofCulicoides(Diptera: Ceratopogonidae) Using CO2and Enantiomers of 1-Octen-3-ol in the United Kingdom. Journal of Medical Entomology, 2012, 49, 112-121.	1.8	30
72	West Nile virus vector Culex modestus established in southern England. Parasites and Vectors, 2012, 5, 32.	2.5	54

#	Article	IF	CITATIONS
73	A study of potential bluetongue vectors and meteorology in Jersey. Weather, 2010, 65, 21-26.	0.7	5
74	The relative resistance to gastrointestinal nematode infection of three British sheep breeds. Research in Veterinary Science, 2009, 87, 263-264.	1.9	9
75	Estimating the number of cases of podoconiosis in Ethiopia using geostatistical methods. Wellcome Open Research, 0, 2, 78.	1.8	8