Nick Golding

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/1876616/publications.pdf
Version: 2024-02-01

Modelling temperatureâ€driven changes in species associations across freshwater communities. Global
Change Biology, 2022, 28, 86-97.

A fractional land use change model for ecological applications. Environmental Modelling and Software, 2022, 147, 105258.

Defining and evaluating predictions of joint species distribution models. Methods in Ecology and Evolution, 2021, 12, 394-404.

Assessing biophysical and socio-economic impacts of climate change on regional avian biodiversity.
Scientific Reports, 2021, 11, 3304.

Ensemble model for estimating continental-scale patterns of human movement: a case study of
Australia. Scientific Reports, 2021, 11, 4806.

Doubleâ€tagging scores of seabirds reveals that lightâ $€ l e v e l ~ g e o l o c a t o r ~ a c c u r a c y ~ i s ~ l i m i t e d ~ b y ~ s p e c i e s ~$ idiosyncrasies and equatorial solar profiles. Methods in Ecology and Evolution, 2021, 12, 2243-2255.
mixchar: An R Package for the Deconvolution of Thermal Decay Curves. Journal of Open Research
$7 \quad$ Software, 2021, 9 .

Data Integration for Large-Scale Models of Species Distributions. Trends in Ecology and Evolution, 2020, 35, 56-67.

Reconstructing the early global dynamics of under-ascertained COVID-19 cases and infections. BMC
Medicine, 2020, 18, 332.

Modelling geospatial distributions of the triatomine vectors of Trypanosoma cruzi in Latin America.
PLoS Neglected Tropical Diseases, 2020, 14, e0008411.

Multiâ€output Gaussian processes for species distribution modelling. Methods in Ecology and
Evolution, 2020, 11, 1587-1598.
<scp>steps</scp>: Software for spatially and temporally explicit population simulations. Methods in
Ecology and Evolution, 2020, 11, 596-603.

13 Early analysis of the Australian COVID-19 epidemic. ELife, 2020, 9, .
2.8

66

14 Mapping 123 million neonatal, infant and child deaths between 2000 and 2017. Nature, 2019, 574, 353-358. 13.7

15 The current and future global distribution and population at risk of dengue. Nature Microbiology,
5.9

645
2019, 4, 1508-1515.

Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature Microbiology, 2019, 4, 854-863.
5.9

699

Utilizing general human movement models to predict the spread of emerging infectious diseases in
resource poor settings. Scientific Reports, $2019,9,5151$.
1.6

89
19 greta: simple and scalable statistical modelling in R. Journal of Open Source Software, 2019, 4, 1601.

20 Existing and potential infection risk zones of yellow fever worldwide: a modelling analysis. The
Managing the timing and speed of vehicles reduces wildlife-transport collision risk. Transportation
Research, Part D: Transport and Environment, 2018, 59, 86-95.

22 The <scp>zoon r </scp> package for reproducible and shareable species distribution modelling.

23	Mapping the geographical distribution of podoconiosis in Cameroon using parasitological, serological, and clinical evidence to exclude other causes of lymphedema. PLoS Neglected Tropical Diseases, 2018, 12, e0006126.	1.3	40
24	The contemporary distribution of Trypanosoma cruzi infection in humans, alternative hosts and vectors. Scientific Data, 2017, 4, 170050.	2.4	39
25	Spread of yellow fever virus outbreak in Angola and the Democratic Republic of the Congo 2015ấ" 16 : a modelling study. Lancet Infectious Diseases, The, 2017, 17, 330-338.	4.6	185

26 Mapping under-5 and neonatal mortality in Africa, 2000âe"15: a baseline analysis for the SustainableDevelopment Goals. Lancet, The, 2017, 390, 2171-2182.
27 Local, national, and regional viral haemorrhagic fever pandemic potential in Africa: a multistage 6.3 80
analysis. Lancet, The, 2017, 390, 2662-2672.Global yellow fever vaccination coverage from 1970 to 2016: an adjusted retrospective analysis. LancetInfectious Diseases, The, 2017, 17, 1209-1217.
$4.6 \quad 128$
Mapping the spatial distribution of the Japanese encephalitis vector, Culex tritaeniorhynchus Ciles, 291901 (Diptera: Culicidae) within areas of Japanese encephalitis risk. Parasites and Vectors, 2017, 10, 148.2930 Estimating the number of cases of podoconiosis in Ethiopia using geostatistical methods. Wellcome0.936Open Research, 2017, 2, 78.
1.1
How will climate change pathways and mitigation options alter incidence of vector-borne diseases? A framework for leishmaniasis in South and Meso-America. PLoS ONE, 2017, 12, e0183583.1.1Improving the built environment in urban areas to control <i>Aedes aegypti</i>-borne diseases.1.5
Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nature

Microbiology, 2016, 1, . | Predicting the geographical distributions of the macaque hosts and mosquito vectors of Plasmodium |
| :--- |
| knowlesi malaria in forested and non-forested areas. Parasites and Vectors, 2016, 9, 242. |

55	Mapping and Modelling the Geographical Distribution and Environmental Limits of Podoconiosis in Ethiopia. PLoS Neglected Tropical Diseases, 2015, 9, e0003946.	1.3	62
56	Global distribution maps of the leishmaniases. ELife, 2014, 3, .	2.8	203
57	Mapping the zoonotic niche of Ebola virus disease in Africa. ELife, 2014, 3, e04395.	2.8	328
58	Defining the Geographical Range of the Plasmodium knowlesi Reservoir. PLoS Neglected Tropical Diseases, 2014, 8, e2780.	1.3	84
59	Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia. Nature Communications, 2014, 5, 4116.	5.8	145
60	The global distribution and transmission limits of lymphatic filariasis: past and present. Parasites and Vectors, 2014, 7, 466.	1.0	96
61	Understanding coâ€occurrence by modelling species simultaneously with a Joint Species Distribution Model (<scp>jSDM</scp>). Methods in Ecology and Evolution, 2014, 5, 397-406.	2.2	477
62	Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasites and Vectors, 2014, 7, 338.	1.0	280
63	Towards the PCR-based identification of Palaearctic Culicoides biting midges (Diptera:) Tj ETQq1 10.7 Avaritia. Parasites and Vectors, 2014, 7, 223.	$\begin{aligned} & \text { IOve } \\ & 1.0 \end{aligned}$	$\begin{aligned} & 10 \mathrm{~T} \\ & 19 \end{aligned}$

64 Geographical variation in Plasmodium vivax relapse. Malaria Journal, 2014, 13, 144.
0.8

223

$$
\begin{aligned}
& 65 \text { A comprehensive database of the geographic spread of past human Ebola outbreaks. Scientific Data, } \\
& 2014,1,140042 \text {. }
\end{aligned}
$$

Global database of leishmaniasis occurrence locations, 1960ấ" 2012 . Scientific Data, 2014, 1, 140036.2.443
67 Larval development and emergence sites of farmâ€associated <i>Culicoides</i> in the United Kingdom. 0.7 64 Medical and Veterinary Entomology, 2013, 27, 441-449.Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory1.0357and field settings. Parasites and Vectors, 2013, 6, 351.
1.150
69 Measurement of the Infection and Dissemination of Bluetongue Virus in Culicoides Biting Midges
Using a Semi-Quantitative RT-PCR Assay and Isolation of Infectious Virus. PLoS ONE, 2013, 8, e70800.1.150Investigation of Diel Activity of <i>Culicoides</i>Biting Midges (Diptera: Ceratopogonidae) in the

West Nile virus vector Culex modestus established in southern England. Parasites and Vectors, 2012,

