List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1875883/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Air pollution exposure monitoring using portable low-cost air quality sensors. Smart Health, 2022, 23, 100241.	2.0	37
2	Connection between lung deposited surface area (LDSA) and black carbon (BC) concentrations in road traffic and harbour environments. Atmospheric Environment, 2022, 272, 118931.	1.9	18
3	Contribution of traffic-originated nanoparticle emissions to regional and local aerosol levels. Atmospheric Chemistry and Physics, 2022, 22, 1131-1148.	1.9	6
4	Characterization of particle sources and comparison of different particle metrics in an urban detached housing area, Finland. Atmospheric Environment, 2022, 272, 118939.	1.9	3
5	Input-adaptive linear mixed-effects model for estimating alveolar lung-deposited surface area (LDSA) using multipollutant datasets. Atmospheric Chemistry and Physics, 2022, 22, 1861-1882.	1.9	3
6	Opinion: Insights into updating Ambient Air Quality Directive 2008/50/EC. Atmospheric Chemistry and Physics, 2022, 22, 4801-4808.	1.9	8
7	An operational urban air quality model ENFUSER, based on dispersion modelling and data assimilation. Environmental Modelling and Software, 2022, 156, 105460.	1.9	12
8	Improving the current air quality index with new particulate indicators using a robust statistical approach. Science of the Total Environment, 2022, 844, 157099.	3.9	9
9	Evaluation of white-box versus black-box machine learning models in estimating ambient black carbon concentration. Journal of Aerosol Science, 2021, 152, 105694.	1.8	21
10	Spatiotemporal variation and trends in equivalent black carbon in the Helsinki metropolitan area in Finland. Atmospheric Chemistry and Physics, 2021, 21, 1173-1189.	1.9	33
11	The effect of meteorological conditions and atmospheric composition in the occurrence and development of new particle formation (NPF) events in Europe. Atmospheric Chemistry and Physics, 2021, 21, 3345-3370.	1.9	21
12	In-depth characterization of submicron particulate matter inter-annual variations at a street canyon site in northern Europe. Atmospheric Chemistry and Physics, 2021, 21, 6297-6314.	1.9	25
13	Variation of Absorption Ãngström Exponent in Aerosols From Different Emission Sources. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034094.	1.2	37
14	The characteristics and size of lung-depositing particles vary significantly between high and low pollution traffic environments. Atmospheric Environment, 2021, 255, 118421.	1.9	19
15	Measurement report: The influence of traffic and new particle formation on the size distribution of 1–800 nm particles in Helsinki – a street canyon and an urban background station comparison. Atmospheric Chemistry and Physics, 2021, 21, 9931-9953.	1.9	13
16	Added Value of Vaisala AQT530 Sensors as a Part of a Sensor Network for Comprehensive Air Quality Monitoring. Frontiers in Environmental Science, 2021, 9, .	1.5	6
17	A phenomenology of new particle formation (NPF) at 13 European sites. Atmospheric Chemistry and Physics, 2021, 21, 11905-11925.	1.9	13
18	Spatial distribution of residential wood combustion emissions in the Nordic countries: How well national inventories represent local emissions?. Atmospheric Environment, 2021, 264, 118712.	1.9	18

#	Article	IF	CITATIONS
19	A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. Environment International, 2021, 157, 106818.	4.8	126
20	Sources of black carbon at residential and traffic environments obtained by two source apportionment methods. Atmospheric Chemistry and Physics, 2021, 21, 14851-14869.	1.9	25
21	Long-term sensor measurements of lung deposited surface area of particulate matter emitted from local vehicular and residential wood combustion sources. Aerosol Science and Technology, 2020, 54, 190-202.	1.5	35
22	Source apportionment of particle number size distribution in urban background and traffic stations in four European cities. Environment International, 2020, 135, 105345.	4.8	106
23	Intelligent Calibration and Virtual Sensing for Integrated Low-Cost Air Quality Sensors. IEEE Sensors Journal, 2020, 20, 13638-13652.	2.4	63
24	Utilization of scattering and absorption-based particulate matter sensors in the environment impacted by residential wood combustion. Journal of Aerosol Science, 2020, 150, 105671.	1.8	20
25	The influence of residential wood combustion on the concentrations of PM _{2.5} in four Nordic cities. Atmospheric Chemistry and Physics, 2020, 20, 4333-4365.	1.9	40
26	Input-Adaptive Proxy for Black Carbon as a Virtual Sensor. Sensors, 2020, 20, 182.	2.1	16
27	Traffic-originated nanocluster emission exceeds H ₂ SO ₄ -driven photochemical new particle formation in an urban area. Atmospheric Chemistry and Physics, 2020, 20, 1-13	1.9	36
28	Long-term trends in PM2.5 mass and particle number concentrations in urban air: The impacts of mitigation measures and extreme events due to changing climates. Environmental Pollution, 2020, 263, 114500.	3.7	38
29	Sensitivity of spatial aerosol particle distributions to the boundary conditions in the PALM model system 6.0. Geoscientific Model Development, 2020, 13, 5663-5685.	1.3	20
30	CITYZER observation network and data delivery system. Geoscientific Instrumentation, Methods and Data Systems, 2020, 9, 397-406.	0.6	0
31	Adaptation of Black Carbon Footprint Concept Would Accelerate Mitigation of Global Warming. Environmental Science & Technology, 2019, 53, 12153-12155.	4.6	14
32	The impact of measures to reduce ambient air PM ₁₀ concentrations originating from road dust, evaluated for a street canyon in Helsinki. Atmospheric Chemistry and Physics, 2019, 19, 11199-11212.	1.9	18
33	Ultrafine particles and PM2.5 in the air of cities around the world: Are they representative of each other?. Environment International, 2019, 129, 118-135.	4.8	110
34	Dispersion of a Traffic Related Nanocluster Aerosol Near a Major Road. Atmosphere, 2019, 10, 309.	1.0	14
35	Particle emissions of Euro VI, EEV and retrofitted EEV city buses in real traffic. Environmental Pollution, 2019, 250, 708-716.	3.7	27
36	Applicability of Optical and Diffusion Charging-Based Particulate Matter Sensors to Urban Air Quality Measurements. Aerosol and Air Quality Research, 2019, 19, 1024-1039.	0.9	22

#	Article	IF	CITATIONS
37	Diurnal variation of nanocluster aerosol concentrations and emission factors in a street canyon. Atmospheric Environment, 2018, 189, 98-106.	1.9	43
38	Vertical profiles of lung deposited surface area concentration of particulate matter measured with a drone in a street canyon. Environmental Pollution, 2018, 241, 96-105.	3.7	46
39	Characteristics and source apportionment of black carbon in the Helsinki metropolitan area, Finland. Atmospheric Environment, 2018, 190, 87-98.	1.9	118
40	Physical and chemical characterization of urban winter-time aerosols by mobile measurements in Helsinki, Finland. Atmospheric Environment, 2017, 158, 60-75.	1.9	38
41	Investigating the chemical species in submicron particles emitted by city buses. Aerosol Science and Technology, 2017, 51, 317-329.	1.5	21
42	Traffic is a major source of atmospheric nanocluster aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7549-7554.	3.3	171
43	Evaluation of the impact of wood combustion on benzo[<i>a</i>]pyrene (BaP) concentrations; ambient measurements and dispersion modeling in Helsinki, Finland. Atmospheric Chemistry and Physics, 2017, 17, 3475-3487.	1.9	32
44	Lung deposited surface area size distributions of particulate matter in different urban areas. Atmospheric Environment, 2016, 136, 105-113.	1.9	67
45	Road salt emissions: A comparison of measurements and modelling using the NORTRIP road dust emission model. Atmospheric Environment, 2016, 141, 508-522.	1.9	23
46	Contribution of mineral dust sources to street side ambient and suspension PM10 samples. Atmospheric Environment, 2016, 147, 178-189.	1.9	35
47	Effects of long-range transported air pollution from vegetation fires on daily mortality and hospital admissions in the Helsinki metropolitan area, Finland. Environmental Research, 2016, 151, 351-358.	3.7	60
48	Chemical and physical characterization of traffic particles in four different highway environments in the Helsinki metropolitan area. Atmospheric Chemistry and Physics, 2016, 16, 5497-5512.	1.9	43
49	Physical and Chemical Characterization of Real-World Particle Number and Mass Emissions from City Buses in Finland. Environmental Science & Technology, 2016, 50, 294-304.	4.6	41
50	Monitoring urban air quality with a diffusion charger based electrical particle sensor. Urban Climate, 2015, 14, 441-456.	2.4	16
51	Chemical and Source Characterization of Submicron Particles at Residential and Traffic Sites in the Helsinki Metropolitan Area, Finland. Aerosol and Air Quality Research, 2015, 15, 1213-1226.	0.9	29
52	Chemical composition and size of particles in emissions of a coal-fired power plant with flue gas desulfurization. Journal of Aerosol Science, 2014, 73, 14-26.	1.8	58
53	Mobile Particle and NOx Emission Characterization at Helsinki Downtown: Comparison of Different Traffic Flow Areas. Aerosol and Air Quality Research, 2014, 14, 1372-1382.	0.9	24
54	Size Distribution, Chemical Composition, and Hygroscopicity of Fine Particles Emitted from an Oil-Fired Heating Plant. Environmental Science & Technology, 2013, 47, 14468-14475.	4.6	16

#	Article	IF	CITATIONS
55	Spatial and temporal characterization of traffic emissions in urban microenvironments with a mobile laboratory. Atmospheric Environment, 2012, 63, 156-167.	1.9	100
56	Characterization of a volcanic ash episode in southern Finland caused by the Grimsvötn eruption in Iceland in May 2011. Atmospheric Chemistry and Physics, 2011, 11, 12227-12239.	1.9	39
57	Primary NO2 emissions and their role in the development of NO2 concentrations in a traffic environment. Atmospheric Environment, 2011, 45, 986-992.	1.9	66
58	Ozone and cause-specific cardiorespiratory morbidity and mortality. Journal of Epidemiology and Community Health, 2010, 64, 814-820.	2.0	61
59	Long-range transport episodes of fine particles in southern Finland during 1999–2007. Atmospheric Environment, 2009, 43, 1255-1264.	1.9	63
60	Singleâ€scattering modeling of thin, birefringent mineralâ€dust flakes using the discreteâ€dipole approximation. Journal of Geophysical Research, 2009, 114, .	3.3	44
61	Changes in background aerosol composition in Finland during polluted and clean periods studied by TEM/EDX individual particle analysis. Atmospheric Chemistry and Physics, 2006, 6, 5049-5066.	1.9	77
62	Characterization of aerosol particle episodes in Finland caused by wildfires in Eastern Europe. Atmospheric Chemistry and Physics, 2005, 5, 2299-2310.	1.9	73
63	Continental impact on marine boundary layer coarse particles over the Atlantic Ocean between Europe and Antarctica. Atmospheric Research, 2005, 75, 301-321.	1.8	33
64	Fatty acids on continental sulfate aerosol particles. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	111
65	Characterization and source identification of a fine particle episode in Finland. Atmospheric Environment, 2004, 38, 5003-5012.	1.9	65