
Bongjun Yeom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1875450/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stretchable nanoparticle conductors with self-organized conductive pathways. Nature, 2013, 500, 59-63.	13.7	729
2	Chiral templating of self-assembling nanostructures by circularly polarized light. Nature Materials, 2015, 14, 66-72.	13.3	330
3	Chiral Graphene Quantum Dots. ACS Nano, 2016, 10, 1744-1755.	7.3	304
4	Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale. Nature Materials, 2016, 15, 461-468.	13.3	220
5	Shape-Dependent Biomimetic Inhibition of Enzyme by Nanoparticles and Their Antibacterial Activity. ACS Nano, 2015, 9, 9097-9105.	7.3	192
6	Abiotic tooth enamel. Nature, 2017, 543, 95-98.	13.7	184
7	Branched Aramid Nanofibers. Angewandte Chemie - International Edition, 2017, 56, 11744-11748.	7.2	140
8	Chiral Plasmonic Nanostructures on Achiral Nanopillars. Nano Letters, 2013, 13, 5277-5283.	4.5	125
9	Anomalous dispersions of â€ [~] hedgehog' particles. Nature, 2015, 517, 596-599.	13.7	116
10	Biomimetic Hierarchical Assembly of Helical Supraparticles from Chiral Nanoparticles. ACS Nano, 2016, 10, 3248-3256.	7.3	104
11	Multiscale deformations lead to high toughness and circularly polarized emission in helical nacre-like fibres. Nature Communications, 2016, 7, 10701.	5.8	90
12	Aramid nanofiber-reinforced transparent nanocomposites. Journal of Composite Materials, 2015, 49, 1873-1879.	1.2	74
13	A Metal‣ike Conductive Elastomer with a Hierarchical Wrinkled Structure. Advanced Materials, 2020, 32, 1906460.	11.1	55
14	Layer-by-layer assembly for ultrathin energy-harvesting films: Piezoelectric and triboelectric nance films. Nano Energy, 2019, 56, 1-15.	8.2	54
15	Modulating the Pattern Quality of Micropatterned Multilayer Films Prepared by Layer-by-Layer Self-Assembly. Langmuir, 2006, 22, 1356-1364.	1.6	41
16	Universal perpendicular orientation of block copolymer microdomains using a filtered plasma. Nature Communications, 2019, 10, 2912.	5.8	41
17	Simultaneously High Stiffness and Damping in Nanoengineered Microtruss Composites. ACS Nano, 2014, 8, 3468-3475.	7.3	40
18	Sonochemical-assisted synthesis of 3D graphene/nanoparticle foams and their application in supercapacitor. Ultrasonics Sonochemistry, 2015, 22, 422-428.	3.8	35

Bongjun Yeom

#	Article	IF	CITATIONS
19	Rate dependent finite strain constitutive modeling of polyurethane and polyurethane–clay nanocomposites. International Journal of Solids and Structures, 2015, 54, 147-155.	1.3	27
20	Coordination Assembly of Discoid Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 8966-8970.	7.2	25
21	Fabrication of Chiral Materials in Nano- and Microscale. Chemistry of Materials, 2021, 33, 807-817.	3.2	25
22	Cesium ion-exchange resin using sodium dodecylbenzenesulfonate for binding to Prussian blue. Chemosphere, 2020, 244, 125589.	4.2	22
23	Nanostructured CaCO ₃ Thin Films Formed on the Urease Multilayers Prepared by the Layer-by-Layer Deposition. Chemistry of Materials, 2010, 22, 101-107.	3.2	19
24	Textileâ€Type Lithiumâ€Ion Battery Cathode Enabling High Specific/Areal Capacities and High Rate Capability through Ligand Replacement Reactionâ€Mediated Assembly. Advanced Energy Materials, 2021, 11, 2101631.	10.2	19
25	Intrinsically Stretchable and Printable Lithium-Ion Battery for Free-Form Configuration. ACS Nano, 2022, 16, 2271-2281.	7.3	19
26	Spontaneous Self-Organization Enables Dielectrophoresis of Small Nanoparticles and Formation of Photoconductive Microbridges. Journal of the American Chemical Society, 2011, 133, 10688-10691.	6.6	18
27	Controlled Fabrication of 3D Chiral Microwrinkles via Asymmetrical and Biaxial Bucklings. Advanced Functional Materials, 2019, 29, 1808979.	7.8	18
28	Highly aligned aramid nanofibrillar nanocomposites for enhanced dynamic mechanical properties. Composites Part B: Engineering, 2022, 229, 109467.	5.9	17
29	Shear-Rolling Process for Unidirectionally and Perpendicularly Oriented Sub-10-nm Block Copolymer Patterns on the 4 in Scale. ACS Nano, 2021, 15, 8549-8558.	7.3	16
30	Vortex-assisted layer-by-layer assembly of silver nanowire thin films for flexible and transparent conductive electrodes. Journal of Colloid and Interface Science, 2017, 493, 371-377.	5.0	15
31	Pyrolysis of Helical Coordination Polymers for Metal-Sulfide-Based Helices with Broadband Chiroptical Activity. ACS Nano, 2017, 11, 5309-5317.	7.3	14
32	Branched Aramid Nanofibers. Angewandte Chemie, 2017, 129, 11906-11910.	1.6	14
33	A conducting composite microfiber containing graphene/silver nanowires in an agarose matrix with fast humidity sensing ability. Polymer, 2019, 164, 1-7.	1.8	13
34	A Layerâ€by‣ayer Assembly Route to Electroplated Fibrilâ€Based 3D Porous Current Collectors for Energy Storage Devices. Small, 2021, 17, e2007579.	5.2	13
35	Effect of Interfacial Adhesion on the Mechanical Properties of Organic/Inorganic Hybrid Nanolaminates. Journal of Adhesion, 2006, 82, 447-468.	1.8	12
36	Chiral Magneto-Optical Properties of Supra-Assembled Fe ₃ O ₄ Nanoparticles. ACS Applied Materials & Interfaces, 2021, 13, 54301-54307.	4.0	11

Bongjun Yeom

#	Article	IF	CITATIONS
37	Thermally triggered self-assembly of β-casein amyloid nanofibrils and their nanomechanical properties. Polymer, 2019, 179, 121626.	1.8	10
38	Chiral Plasmonic Nanowaves by Tilted Assembly of Unidirectionally Aligned Block Copolymers with Buckling-Induced Microwrinkles. ACS Nano, 2021, 15, 17463-17471.	7.3	10
39	Chargeâ€Transfer Effects of Organic Ligands on Energy Storage Performance of Oxide Nanoparticleâ€Based Electrodes. Advanced Functional Materials, 2022, 32, 2106438.	7.8	9
40	A loop of two rods. Nature Materials, 2014, 13, 228-229.	13.3	7
41	Enhancement of fracture toughness in organic/inorganic hybrid nanolaminates with ultrathin adhesive layers. Polymer, 2016, 91, 187-193.	1.8	7
42	Titania nanoparticle-loaded mesoporous silica synthesized through layer-by-layer assembly for the photodegradation of sodium dodecylbenzenesulfonate. Applied Surface Science, 2019, 490, 38-46.	3.1	7
43	Birefringence-Induced Modulation of Optical Activity in Chiral Plasmonic Helical Arrays. Journal of Physical Chemistry Letters, 2017, 8, 1872-1877.	2.1	6
44	Anisotropic Alignment of Bacterial Nanocellulose Ionogels for Unconventionally High Combination of Stiffness and Damping. ACS Applied Materials & Interfaces, 2022, 14, 30056-30066.	4.0	5
45	Enzyme-assisted growth of nacreous CaCO3/polymer hybrid nanolaminates via the formation of mineral bridges. Journal of Crystal Growth, 2016, 443, 31-37.	0.7	4
46	Layerâ€by‣ayer Assembly of κ Casein Amyloid Fibrils for the Preparation of Hollow Microcapsules. Macromolecular Chemistry and Physics, 2018, 219, 1700382.	1.1	4
47	Multiple Transfer of Layer-by-Layer Nanofunctional Films by Adhesion Controls. ACS Applied Materials & Interfaces, 2019, 11, 48476-48486.	4.0	4
48	Preprogrammed microfluidic system for parallel anti-reflection coating by layer-by-layer assembly. Lab on A Chip, 2021, 21, 4629-4636.	3.1	4
49	Effect of soft segment and clay volume fraction on rate dependent damping of polyurethane and polyurethane-clay nanocomposites. Journal of Reinforced Plastics and Composites, 2014, 33, 2129-2135.	1.6	3
50	Conductive Elastomers: A Metal‣ike Conductive Elastomer with a Hierarchical Wrinkled Structure (Adv. Mater. 7/2020). Advanced Materials, 2020, 32, 2070051.	11.1	2
51	Macromol. Chem. Phys. 3/2018. Macromolecular Chemistry and Physics, 2018, 219, 1870009.	1.1	0