Waleed M Hussein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/187491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Histone Deacetylase Inhibitors: Providing New Insights and Therapeutic Avenues for Unlocking Human Birth. Reproductive Sciences, 2022, 29, 3134-3146.	2.5	2
2	Peptide-Based Nanovaccines in the Treatment of Cervical Cancer: A Review of Recent Advances. International Journal of Nanomedicine, 2022, Volume 17, 869-900.	6.7	17
3	Development of a peptide vaccine against hookworm infection: Immunogenicity, efficacy, and immune correlates of protection. Journal of Allergy and Clinical Immunology, 2022, 150, 157-169.e10.	2.9	5
4	Investigation of liposomal self-adjuvanting peptide epitopes derived from conserved blood-stage Plasmodium antigens. PLoS ONE, 2022, 17, e0264961.	2.5	0
5	Structure-activity relationship of lipid, cyclic peptide and antigen rearrangement of physically mixed vaccines. International Journal of Pharmaceutics, 2022, 617, 121614.	5.2	1
6	Peptide-Based Vaccine against SARS-CoV-2: Peptide Antigen Discovery and Screening of Adjuvant Systems. Pharmaceutics, 2022, 14, 856.	4.5	4
7	Advances in Infectious Disease Vaccine Adjuvants. Vaccines, 2022, 10, 1120.	4.4	32
8	Discovery of a Pyrimidinedione Derivative with Potent Inhibitory Activity against Mycobacterium tuberculosis Ketol–Acid Reductoisomerase. Chemistry - A European Journal, 2021, 27, 3130-3141.	3.3	10
9	Peptide-Pegylated Lipid Conjugation Via Copper-Catalyzed Alkyne-Azide 1,3-Dipolar Cycloaddition. Methods in Molecular Biology, 2021, 2355, 57-64.	0.9	0
10	Analogues of the Herbicide, <i>N</i> -Hydroxy- <i>N</i> -isopropyloxamate, Inhibit <i>Mycobacterium tuberculosis</i> Ketol-Acid Reductoisomerase and Their Prodrugs Are Promising Anti-TB Drug Leads. Journal of Medicinal Chemistry, 2021, 64, 1670-1684.	6.4	10
11	Poly(hydrophobic amino acid)-Based Self-Adjuvanting Nanoparticles for Group A <i>Streptococcus</i> Vaccine Delivery. Journal of Medicinal Chemistry, 2021, 64, 2648-2658.	6.4	32
12	Immunogenicity Assessment of Cell Wall Carbohydrates of Group A <i>Streptococcus</i> via Self-Adjuvanted Glyco-lipopeptides. ACS Infectious Diseases, 2021, 7, 390-405.	3.8	9
13	Polyethylenimine quantity and molecular weight influence its adjuvanting properties in liposomal peptide vaccines. Bioorganic and Medicinal Chemistry Letters, 2021, 40, 127920.	2.2	9
14	Cell-Penetrating Peptides-Based Liposomal Delivery System Enhanced Immunogenicity of Peptide-Based Vaccine against Group A Streptococcus. Vaccines, 2021, 9, 499.	4.4	19
15	Key Considerations for the Development of Safe and Effective SARSâ€CoVâ€2 Subunit Vaccine: A Peptideâ€Based Vaccine Alternative. Advanced Science, 2021, 8, e2100985.	11.2	16
16	Pre-clinical evaluation of a whole-parasite vaccine to control human babesiosis. Cell Host and Microbe, 2021, 29, 894-903.e5.	11.0	14
17	Poly(hydrophobic amino acid) Conjugates for the Delivery of Multiepitope Vaccine against Group A Streptococcus. Bioconjugate Chemistry, 2021, 32, 2307-2317.	3.6	8
18	Oral Peptide Vaccine against Hookworm Infection: Correlation of Antibody Titers with Protective Efficacy. Vaccines, 2021, 9, 1034.	4.4	14

#	Article	IF	CITATIONS
19	Rational Design of Potent Inhibitors of a Metallohydrolase Using a Fragmentâ€Based Approach. ChemMedChem, 2021, 16, 3342-3359.	3.2	3
20	Double Conjugation Using Mercapto-Acryloyl and Alkyne-Azide Reactions for the Synthesis of Branched Multiantigenic Vaccine Candidates. Methods in Molecular Biology, 2021, 2355, 141-150.	0.9	0
21	Peptide-Polymer Conjugation Via Copper-Catalyzed Alkyne-Azide 1,3-Dipolar Cycloaddition. Methods in Molecular Biology, 2021, 2355, 1-7.	0.9	1
22	Development and Evaluation of a Cryopreserved Whole-Parasite Vaccine in a Rodent Model of Blood-Stage Malaria. MBio, 2021, 12, e0265721.	4.1	11
23	Hookworm infection: Toward development of safe and effective peptide vaccines. Journal of Allergy and Clinical Immunology, 2021, 148, 1394-1419.e6.	2.9	2
24	Physical mixture of a cyclic lipopeptide vaccine induced high titres of opsonic IgG antibodies against group A streptococcus. Biomaterials Science, 2021, 10, 281-293.	5.4	5
25	Hydroxyl substituted benzoic acid/cinnamic acid derivatives: Tyrosinase inhibitory kinetics, anti-melanogenic activity and molecular docking studies. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126722.	2.2	40
26	Mannosylated liposomes formulated with whole parasite P. falciparum blood-stage antigens are highly immunogenic in mice. Vaccine, 2020, 38, 1494-1504.	3.8	8
27	Design, synthesis, biological evaluation and in silico studies of certain aryl sulfonyl hydrazones conjugated with 1,3-diaryl pyrazoles as potent metallo-β-lactamase inhibitors. Bioorganic Chemistry, 2020, 105, 104386.	4.1	16
28	Progress in the Development of Subunit Vaccines against Malaria. Vaccines, 2020, 8, 373.	4.4	15
29	Polyethylenimine: An Intranasal Adjuvant for Liposomal Peptide-Based Subunit Vaccine against Group A <i>Streptococcus</i> . ACS Infectious Diseases, 2020, 6, 2502-2512.	3.8	21
30	A dual-adjuvanting strategy for peptide-based subunit vaccines against group A Streptococcus: Lipidation and polyelectrolyte complexes. Bioorganic and Medicinal Chemistry, 2020, 28, 115823.	3.0	6
31	Structure–Activity Analysis of Cyclic Multicomponent Lipopeptide Self-Adjuvanting Vaccine Candidates Presenting Group A <i>Streptococcus</i> Antigens. Journal of Medicinal Chemistry, 2020, 63, 5387-5397.	6.4	11
32	Opsonic Activity of Conservative Versus Variable Regions of the Group A Streptococcus M Protein. Vaccines, 2020, 8, 210.	4.4	9
33	Discovery, Synthesis and Evaluation of a Ketolâ€Acid Reductoisomerase Inhibitor. Chemistry - A European Journal, 2020, 26, 8958-8968.	3.3	15
34	Polyacrylate–Peptide Antigen Conjugate as a Single-Dose Oral Vaccine against Group A Streptococcus. Vaccines, 2020, 8, 23.	4.4	25
35	Poly(amino acids) as a potent self-adjuvanting delivery system for peptide-based nanovaccines. Science Advances, 2020, 6, eaax2285.	10.3	85
36	Development of Polyelectrolyte Complexes for the Delivery of Peptide-Based Subunit Vaccines against Group A Streptococcus. Nanomaterials, 2020, 10, 823.	4.1	29

#	Article	IF	CITATIONS
37	An Isodipeptide Building Block for Microwave-Assisted Solid-Phase Synthesis of Difficult Sequence-Containing Peptides. Methods in Molecular Biology, 2020, 2103, 139-150.	0.9	2
38	Peptide-based targeted polymeric nanoparticles for siRNA delivery. Nanotechnology, 2019, 30, 415604.	2.6	21
39	Cholic Acid-based Delivery System for Vaccine Candidates against Group A Streptococcus. ACS Medicinal Chemistry Letters, 2019, 10, 1253-1259.	2.8	23
40	Recent Advances in the Development of Peptide Vaccines and Their Delivery Systems Against Group A Streptococcus. Vaccines, 2019, 7, 58.	4.4	50
41	Synthesis, evaluation and structural investigations of potent purple acid phosphatase inhibitors as drug leads for osteoporosis. European Journal of Medicinal Chemistry, 2019, 182, 111611.	5.5	9
42	Synthesis and evaluation of novel purple acid phosphatase inhibitors. MedChemComm, 2019, 10, 61-71.	3.4	6
43	Self-assembly of trimethyl chitosan and poly(anionic amino acid)-peptide antigen conjugate to produce a potent self-adjuvanting nanovaccine delivery system. Bioorganic and Medicinal Chemistry, 2019, 27, 3082-3088.	3.0	30
44	Structure-activity relationship of group A streptococcus lipopeptide vaccine candidates in trimethyl chitosan-based self-adjuvanting delivery system. European Journal of Medicinal Chemistry, 2019, 179, 100-108.	5.5	27
45	Advances in Targeted Gene Delivery. Current Drug Delivery, 2019, 16, 588-608.	1.6	15
46	Carbohydrates in Vaccine Development. Current Drug Delivery, 2019, 16, 609-617.	1.6	3
47	Polyglutamic acid-trimethyl chitosan-based intranasal peptide nano-vaccine induces potent immune responses against group A streptococcus. Acta Biomaterialia, 2018, 80, 278-287.	8.3	75
48	Purple acid phosphatase inhibitors as leads for osteoporosis chemotherapeutics. European Journal of Medicinal Chemistry, 2018, 157, 462-479.	5.5	15
49	Liposomal formulation of polyacrylate-peptide conjugate as a new vaccine candidate against cervical cancer. Precision Nanomedicine, 2018, 1, 183-193.	0.8	8
50	Investigating the affinity of poly tert -butyl acrylate toward Toll-Like Receptor 2. AIMS Allergy and Immunology, 2018, 2, 141-147.	0.5	6
51	Comparison of Fluorinated and Nonfluorinated Lipids in Self-Adjuvanting Delivery Systems for Peptide-Based Vaccines. ACS Medicinal Chemistry Letters, 2017, 8, 227-232.	2.8	12
52	Synthesis, Characterization and Immunological Evaluation of Selfâ€Adjuvanting Groupâ€A Streptococcal Vaccine Candidates Bearing Various Lipidic Adjuvanting Moieties. ChemBioChem, 2017, 18, 545-553.	2.6	10
53	Synthesis of Multicomponent Peptide-Based Vaccine Candidates against Group A Streptococcus. Australian Journal of Chemistry, 2017, 70, 184.	0.9	3
54	Evaluation of Lipopeptides as Toll-like Receptor 2 Ligands. Current Drug Delivery, 2017, 14, 935-943.	1.6	6

#	Article	IF	CITATIONS
55	Linear and branched polyacrylates as a delivery platform for peptide-based vaccines. Therapeutic Delivery, 2016, 7, 601-609.	2.2	21
56	Multiantigenic peptide–polymer conjugates as therapeutic vaccines against cervical cancer. Bioorganic and Medicinal Chemistry, 2016, 24, 4372-4380.	3.0	34
57	Lipid core peptide/poly(lactic-co-glycolic acid) as a highly potent intranasal vaccine delivery system against Group A streptococcus. International Journal of Pharmaceutics, 2016, 513, 410-420.	5.2	36
58	Double adjuvanting strategy for peptide-based vaccines: trimethyl chitosan nanoparticles for lipopeptide delivery. Nanomedicine, 2016, 11, 3223-3235.	3.3	49
59	Structure–activity relationship of lipid core peptide-based Group A Streptococcus vaccine candidates. Bioorganic and Medicinal Chemistry, 2016, 24, 3095-3101.	3.0	25
60	Design, synthesis, and inÂvitro and biological evaluation of potent amino acid-derived thiol inhibitors of the metallo-l²-lactamase IMP-1. European Journal of Medicinal Chemistry, 2016, 114, 318-327.	5.5	39
61	Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chemical Science, 2016, 7, 2492-2500.	7.4	191
62	Double conjugation strategy to incorporate lipid adjuvants into multiantigenic vaccines. Chemical Science, 2016, 7, 2308-2321.	7.4	24
63	Self-Adjuvanting Therapeutic Peptide-Based Vaccine Induce CD8 ⁺ Cytotoxic T Lymphocyte Responses in a Murine Human Papillomavirus Tumor Model. Current Drug Delivery, 2015, 12, 3-8.	1.6	24
64	Levofloxacin and Indolicidin for Combination Antimicrobial Therapy. Current Drug Delivery, 2015, 12, 108-114.	1.6	37
65	Combined synthetic and recombinant techniques for the development of lipoprotein-based, self-adjuvanting vaccines targeting human papillomavirus type-16 associated tumors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5570-5575.	2.2	6
66	Self-assembling lipopeptides with a potent activity against Gram-positive bacteria, including multidrug resistant strains. Nanomedicine, 2015, 10, 3359-3371.	3.3	9
67	Polyacrylate-Based Delivery System for Self-adjuvanting Anticancer Peptide Vaccine. Journal of Medicinal Chemistry, 2015, 58, 888-896.	6.4	56
68	Use of Ethyl (Benzothiazol-2-ylsulfonyl)acetate for Malonic Ester-type Syntheses of Carboxylic Acids and Esters. Australian Journal of Chemistry, 2014, 67, 1222.	0.9	2
69	Toll-like receptor agonists: a patent review (2011 – 2013). Expert Opinion on Therapeutic Patents, 2014, 24, 453-470.	5.0	62
70	A Drug Delivery Strategy: Binding Enkephalin to Asialoglycoprotein Receptor by Enzymatic Galactosylation. PLoS ONE, 2014, 9, e95024.	2.5	15
71	Self-Adjuvanting Polymer–Peptide Conjugates As Therapeutic Vaccine Candidates against Cervical Cancer. Biomacromolecules, 2013, 14, 2798-2806.	5.4	112
72	Microwave-assisted synthesis of difficult sequence-containing peptides using the isopeptide method. Organic and Biomolecular Chemistry, 2013, 11, 2370.	2.8	18

#	Article	IF	CITATIONS
73	2-Mercaptobenzothiazole and its Derivatives: Syntheses, Reactions and Applications. Current Organic Chemistry, 2012, 16, 1555-1580.	1.6	44
74	Advances in Peptide-based Human Papillomavirus Therapeutic Vaccines. Current Topics in Medicinal Chemistry, 2012, 12, 1581-1592.	2.1	52
75	Identification of Purple Acid Phosphatase Inhibitors by Fragmentâ€Based Screening: Promising New Leads for Osteoporosis Therapeutics. Chemical Biology and Drug Design, 2012, 80, 665-674.	3.2	28
76	Synthesis, biological activity and structure–activity relationship of endomorphin-1/substance P derivatives. Bioorganic and Medicinal Chemistry, 2012, 20, 6335-6343.	3.0	11
77	3-Mercapto-1,2,4-triazoles and N-acylated thiosemicarbazides as metallo-Î ² -lactamase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 380-386.	2.2	68
78	Penicillin inhibitors of purple acid phosphatase. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2555-2559.	2.2	13
79	Synthesis and Kinetic Testing of Tetrahydropyrimidineâ€2â€thione and Pyrrole Derivatives as Inhibitors of the Metalloâ€Î²â€łactamase from <i>Klebsiella pneumonia</i> and <i>Pseudomonas aeruginosa</i> . Chemical Biology and Drug Design, 2012, 80, 500-515.	3.2	47
80	Synthesis and kinetic testing of new inhibitors for a metallo-β-lactamase from Klebsiella pneumonia and Pseudomonas aeruginosa. European Journal of Medicinal Chemistry, 2011, 46, 6075-6082.	5.5	53
81	Synthesis, modelling and kinetic assays of potent inhibitors of purple acid phosphatase. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3092-3094.	2.2	22
82	The identification of new metallo-β-lactamase inhibitor leads from fragment-based screening. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3282-3285.	2.2	70
83	Molecular Packing of Functionalized Fluorinated Lipids in Langmuir Monolayers. Langmuir, 2010, 26, 18868-18873.	3.5	11
84	Synthesis of Nickel-Chelating Fluorinated Lipids for Protein Monolayer Crystallizations. Journal of Organic Chemistry, 2009, 74, 1473-1479.	3.2	17
85	Synthetic Approaches to Functionalized Lipids for Protein Monolayer Crystallizations. Current Organic Chemistry, 2009, 13, 1378-1405.	1.6	3