
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1874775/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	\hat{I}^3 H2AX foci analysis for monitoring DNA double-strand break repair: Strengths, limitations and optimization. Cell Cycle, 2010, 9, 662-669.	1.3	545
2	DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nature Communications, 2017, 8, 1751.	5.8	497
3	DNA Double-Strand Break Repair Pathway Choice Is Directed by Distinct MRE11 Nuclease Activities. Molecular Cell, 2014, 53, 7-18.	4.5	466
4	ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO Journal, 2009, 28, 3413-3427.	3.5	457
5	Factors determining DNA double-strand break repair pathway choice in G2 phase. EMBO Journal, 2011, 30, 1079-1092.	3.5	381
6	53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nature Cell Biology, 2010, 12, 177-184.	4.6	289
7	Human Rad52 Promotes XPG-Mediated R-loop Processing to Initiate Transcription-Associated Homologous Recombination Repair. Cell, 2018, 175, 558-570.e11.	13.5	229
8	DNA Double-Strand Break Resection Occurs during Non-homologous End Joining in G1 but Is Distinct from Resection during Homologous Recombination. Molecular Cell, 2017, 65, 671-684.e5.	4.5	184
9	Regulation of repair pathway choice at two-ended DNA double-strand breaks. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2017, 803-805, 51-55.	0.4	141
10	BRCA1 Directs the Repair Pathway to Homologous Recombination by Promoting 53BP1 Dephosphorylation. Cell Reports, 2017, 18, 520-532.	2.9	136
11	Novel Approaches to Improve the Efficacy of Immuno-Radiotherapy. Frontiers in Oncology, 2019, 9, 156.	1.3	119
12	Sensitization to Radiation and Alkylating Agents by Inhibitors of Poly(ADP-ribose) Polymerase Is Enhanced in Cells Deficient in DNA Double-Strand Break Repair. Molecular Cancer Therapeutics, 2010, 9, 1775-1787.	1.9	118
13	Endogenously induced DNA double strand breaks arise in heterochromatic DNA regions and require ataxia telangiectasia mutated and Artemis for their repair. Nucleic Acids Research, 2011, 39, 6986-6997.	6.5	111
14	Co-operation of BRCA1 and POH1 relieves the barriers posed by 53BP1 and RAP80 to resection. Nucleic Acids Research, 2013, 41, 10298-10311.	6.5	99
15	Role of ATM and the Damage Response Mediator Proteins 53BP1 and MDC1 in the Maintenance of G ₂ /M Checkpoint Arrest. Molecular and Cellular Biology, 2010, 30, 3371-3383.	1.1	97
16	Opposing roles for 53BP1 during homologous recombination. Nucleic Acids Research, 2013, 41, 9719-9731.	6.5	74
17	Base excision repair regulates PD-L1 expression in cancer cells. Oncogene, 2019, 38, 4452-4466.	2.6	70
18	SETDB1, HP1 and SUV39 promote repositioning of 53BP1 to extend resection during homologous	6.5	69

⁸ recombination in G2 cells. Nucleic Acids Research, 2015, 43, 7931-7944.

#	Article	IF	CITATIONS
19	Visualisation of γH2AX Foci Caused by Heavy Ion Particle Traversal; Distinction between Core Track versus Non-Track Damage. PLoS ONE, 2013, 8, e70107.	1.1	68
20	Clustered DNA double-strand break formation and the repair pathway following heavy-ion irradiation. Journal of Radiation Research, 2019, 60, 69-79.	0.8	67
21	Roles for 53BP1 in the repair of radiation-induced DNA double strand breaks. DNA Repair, 2020, 93, 102915.	1.3	61
22	Parp-1 deficiency causes an increase of deletion mutations and insertions/rearrangements in vivo after treatment with an alkylating agent. Oncogene, 2005, 24, 1328-1337.	2.6	59
23	The pendulum of the Ku-Ku clock. DNA Repair, 2018, 71, 164-171.	1.3	52
24	3D-structured illumination microscopy reveals clustered DNA double-strand break formation in widespread γH2AX foci after high LET heavy-ion particle radiation. Oncotarget, 2017, 8, 109370-109381.	0.8	51
25	Visualization of complex DNA double-strand breaks in a tumor treated with carbon ion radiotherapy. Scientific Reports, 2016, 6, 22275.	1.6	49
26	Combination of Anti-Cancer Drugs with Molecular Chaperone Inhibitors. International Journal of Molecular Sciences, 2019, 20, 5284.	1.8	43
27	Regulation of programmed deathâ€ligand 1 expression in response to <scp>DNA</scp> damage in cancer cells: Implications for precision medicine. Cancer Science, 2019, 110, 3415-3423.	1.7	42
28	ATM's Role in the Repair of DNA Double-Strand Breaks. Genes, 2021, 12, 1370.	1.0	38
29	Carbon-Ion Beam Irradiation Kills X-Ray-Resistant p53-Null Cancer Cells by Inducing Mitotic Catastrophe. PLoS ONE, 2014, 9, e115121.	1.1	37
30	Differential involvement of phosphatidylinositol 3-kinase-related protein kinases in hyperphosphorylation of replication protein A2 in response to replication-mediated DNA double-strand breaks. Genes To Cells, 2006, 11, 237-246.	0.5	35
31	Robustness of Clonogenic Assays as a Biomarker for Cancer Cell Radiosensitivity. International Journal of Molecular Sciences, 2019, 20, 4148.	1.8	33
32	Analysis of Human Syndromes with Disordered Chromatin Reveals the Impact of Heterochromatin on the Efficacy of ATM-Dependent G ₂ /M Checkpoint Arrest. Molecular and Cellular Biology, 2011, 31, 4022-4035.	1.1	32
33	A historical reflection on our understanding of radiation-induced DNA double strand break repair in somatic mammalian cells; interfacing the past with the present. International Journal of Radiation Biology, 2019, 95, 945-956.	1.0	31
34	Aquarius is required for proper CtIP expression and homologous recombination repair. Scientific Reports, 2017, 7, 13808.	1.6	30
35	The EGFR mutation status affects the relative biological effectiveness of carbon-ion beams in non-small cell lung carcinoma cells. Scientific Reports, 2015, 5, 11305.	1.6	29
36	Mitotic catastrophe is a putative mechanism underlying the weak correlation between sensitivity to carbon ions and cisplatin. Scientific Reports, 2017, 7, 40588.	1.6	29

#	Article	IF	CITATIONS
37	Inhibition of the HDAC/Suv39/G9a pathway restores the expression of DNA damage-dependent major histocompatibility complex class I-related chain A and B in cancer cells. Oncology Reports, 2017, 38, 693-702.	1.2	25
38	Genomic DNA damage and ATR-Chk1 signaling determine oncolytic adenoviral efficacy in human ovarian cancer cells. Journal of Clinical Investigation, 2011, 121, 1283-1297.	3.9	25
39	Canonical DNA non-homologous end-joining; capacity versus fidelity. British Journal of Radiology, 2020, 93, 20190966.	1.0	24
40	Radiosensitivity Differences between EGFR Mutant and Wild-Type Lung Cancer Cells are Larger at Lower Doses. International Journal of Molecular Sciences, 2019, 20, 3635.	1.8	22
41	Role of Parp-1 in suppressing spontaneous deletion mutation in the liver and brain of mice at adolescence and advanced age. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 664, 20-27.	0.4	20
42	DNA Repair and Signaling in Immune-Related Cancer Therapy. Frontiers in Molecular Biosciences, 2020, 7, 205.	1.6	20
43	DNA double-strand break end resection: a critical relay point for determining the pathway of repair and signaling. Genome Instability & Disease, 2020, 1, 155-171.	0.5	18
44	UBC13-Mediated Ubiquitin Signaling Promotes Removal of Blocking Adducts from DNA Double-Strand Breaks. IScience, 2020, 23, 101027.	1.9	17
45	Roles for the DNA-PK complex and 53BP1 in protecting ends from resection during DNA double-strand break repair. Journal of Radiation Research, 2020, 61, 718-726.	0.8	17
46	High linear energy transfer carbon-ion irradiation upregulates PD-L1 expression more significantly than X-rays in human osteosarcoma U2OS cells. Journal of Radiation Research, 2021, 62, 773-781.	0.8	17
47	Mutational analysis of uterine cervical cancer that survived multiple rounds of radiotherapy. Oncotarget, 2018, 9, 32642-32652.	0.8	16
48	Analysis of radiotherapyâ€ʻinduced alteration of CD8+ T cells and PDâ€ʻL1 expression in patients with uterine cervical squamous cell carcinoma. Oncology Letters, 2021, 21, 446.	0.8	16
49	Carbon-ion beams effectively induce growth inhibition and apoptosis in human neural stem cells compared with glioblastoma A172 cells. Journal of Radiation Research, 2015, 56, 856-861.	0.8	15
50	RAD51 and BRCA2 Enhance Oncolytic Adenovirus Type 5 Activity in Ovarian Cancer. Molecular Cancer Research, 2016, 14, 44-55.	1.5	15
51	Regulation of pairing between broken DNA-containing chromatin regions by Ku80, DNA-PKcs, ATM, and 53BP1. Scientific Reports, 2017, 7, 41812.	1.6	15
52	Pre-Exposure to Ionizing Radiation Stimulates DNA Double Strand Break End Resection, Promoting the Use of Homologous Recombination Repair. PLoS ONE, 2015, 10, e0122582.	1.1	13
53	Relative Biological Effectiveness of Carbon Ions for Head-and-Neck Squamous Cell Carcinomas According to Human Papillomavirus Status. Journal of Personalized Medicine, 2020, 10, 71.	1.1	13
54	DNA damage promotes HLA class I presentation by stimulating a pioneer round of translation-associated antigen production. Molecular Cell, 2022, 82, 2557-2570.e7.	4.5	13

#	Article	IF	CITATIONS
55	One-step Protocol for Evaluation of the Mode of Radiation-induced Clonogenic Cell Death by Fluorescence Microscopy. Journal of Visualized Experiments, 2017, , .	0.2	12
56	FGFR Signaling as a Candidate Therapeutic Target for Cancers Resistant to Carbon Ion Radiotherapy. International Journal of Molecular Sciences, 2019, 20, 4563.	1.8	12
57	Identification of DNA double strand breaks at chromosome boundaries along the track of particle irradiation. Genes Chromosomes and Cancer, 2016, 55, 650-660.	1.5	11
58	Modulation of immune responses by DNA damage signaling. DNA Repair, 2021, 104, 103135.	1.3	8
59	DNA Double-Strand Break Repair Pathway Choice Is Directed by Distinct MRE11 Nuclease Activities. Molecular Cell, 2014, 53, 361.	4.5	7
60	Deep learning-assisted literature mining for in vitro radiosensitivity data. Radiotherapy and Oncology, 2019, 139, 87-93.	0.3	7
61	Comparison of Clonogenic Survival Data Obtained by Pre- and Post-Irradiation Methods. Journal of Personalized Medicine, 2020, 10, 171.	1.1	7
62	Expression of non‑homologous end joining factor, Ku80, is negatively correlated with PD‑L1 expression in cancer cells after X‑ray irradiation. Oncology Letters, 2021, 23, 29.	0.8	7
63	Analysis of programmed death-ligand 1 expression in primary normal human dermal fibroblasts after DNA damage. Human Immunology, 2018, 79, 627-631.	1.2	6
64	Induction of Micronuclei in Cervical Cancer Treated with Radiotherapy. Journal of Personalized Medicine, 2020, 10, 110.	1.1	6
65	Reporting of methodologies used for clonogenic assays to determine radiosensitivity. Journal of Radiation Research, 2020, 61, 828-831.	0.8	5
66	64Cu-ATSM Predicts Efficacy of Carbon Ion Radiotherapy Associated with Cellular Antioxidant Capacity. Cancers, 2021, 13, 6159.	1.7	5
67	p53 deficiency augments nucleolar instability after ionizing irradiation. Oncology Reports, 2019, 42, 2293-2302.	1.2	4
68	Efficient method for mapping and characterizing structures of deletion mutations ingpt delta mice using Southern blot analysis with oligo DNA probes. Environmental and Molecular Mutagenesis, 2004, 43, 204-207.	0.9	3
69	Genome Maintenance Mechanisms at the Chromatin Level. International Journal of Molecular Sciences, 2021, 22, 10384.	1.8	3
70	Mechanism of chromosome rearrangement arising from single-strand breaks. Biochemical and Biophysical Research Communications, 2021, 572, 191-196.	1.0	3
71	RAP80 suppresses the vulnerability of R-loops during DNA double-strand break repair. Cell Reports, 2022, 38, 110335.	2.9	3
72	RNF8 promotes high linear energy transfer carbon-ion-induced DNA double-stranded break repair in serum-starved human cells. DNA Repair, 2020, 91-92, 102872.	1.3	2

#	Article	IF	CITATIONS
73	Quantitative volumetric analysis of the Golgi apparatus following X-ray irradiation by super-resolution 3D-SIM microscopy. Medical Molecular Morphology, 2021, 54, 166-172.	0.4	2
74	Radiosensitization by the Selective Pan-FGFR Inhibitor LY2874455. Cells, 2022, 11, 1727.	1.8	1
75	Molecular Mechanism of PD-L1 Upregulation in Cancer Cells after X-Ray Irradiation. International Journal of Radiation Oncology Biology Physics, 2017, 99, S163.	0.4	0
76	ATM: Its Recruitment, Activation, Signalling and Contribution to Tumour Suppression. Cancer Drug Discovery and Development, 2018, , 129-154.	0.2	0
77	Abstract 591: Host cell DNA damage and inflammation responses determine oncolytic adenovirus efficacy in ovarian cancer. , 2010, , .		0
78	Other Determinants of Sensitivity. Cancer Drug Discovery and Development, 2015, , 363-379.	0.2	0
79	8.2.2 DNA Damage and Repair by Particle Beam. Radioisotopes, 2019, 68, 693-700.	0.1	0