Guohua Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1874708/publications.pdf

Version: 2024-02-01

7718 3919 27,145 355 88 citations h-index papers

g-index 367 367 367 27139 docs citations times ranked citing authors all docs

150

#	Article	IF	CITATIONS
1	Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 2004, 38, 11-41.	3.9	2,585
2	Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Research, 2005, 39, 4528-4536.	5 . 3	925
3	Photoelectrocatalytic materials for environmental applications. Journal of Materials Chemistry, 2009, 19, 5089.	6.7	880
4	Separation of pollutants from restaurant wastewater by electrocoagulation. Separation and Purification Technology, 2000, 19, 65-76.	3.9	675
5	Potent Antibacterial Activities of Ag/TiO ₂ Nanocomposite Powders Synthesized by a One-Pot Solâ^Gel Method. Environmental Science & Environme	4.6	404
6	Electrochemical removal of fluoride ions from industrial wastewater. Chemical Engineering Science, 2003, 58, 987-993.	1.9	369
7	As(V) adsorption on maghemite nanoparticles. Journal of Hazardous Materials, 2009, 166, 1415-1420.	6. 5	368
8	Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nature Energy, 2019, 4, 484-494.	19.8	345
9	Selective Removal of Heavy Metals from Industrial Wastewater Using Maghemite Nanoparticle: Performance and Mechanisms. Journal of Environmental Engineering, ASCE, 2006, 132, 709-715.	0.7	320
10	Electrochemical Method for Synthesis of a ZnFe ₂ O ₄ /TiO ₂ Composite Nanotube Array Modified Electrode with Enhanced Photoelectrochemical Activity. Advanced Functional Materials, 2010, 20, 2165-2174.	7.8	317
11	Fast Removal and Recovery of Cr(VI) Using Surface-Modified Jacobsite (MnFe2O4) Nanoparticles. Langmuir, 2005, 21, 11173-11179.	1.6	309
12	Fabrication of Boron-Doped TiO ₂ Nanotube Array Electrode and Investigation of Its Photoelectrochemical Capability. Journal of Physical Chemistry C, 2007, 111, 11836-11842.	1.5	271
13	Comparative study of various magnetic nanoparticles for Cr(VI) removal. Separation and Purification Technology, 2007, 56, 249-256.	3.9	247
14	Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors. Journal of Power Sources, 2018, 378, 579-588.	4.0	246
15	A fast estimation algorithm for lithium-ion battery state of health. Journal of Power Sources, 2018, 396, 453-458.	4.0	240
16	Photoeletrocatalytic Activity of a Cu ₂ O-Loaded Self-Organized Highly Oriented TiO ₂ Nanotube Array Electrode for 4-Chlorophenol Degradation. Environmental Science & Environmenta	4.6	236
17	Role of Hydroxyl Radicals and Mechanism of <i>Escherichia coli</i> Inactivation on Ag/AgBr/TiO ₂ Nanotube Array Electrode under Visible Light Irradiation. Environmental Science & Eamp; Technology, 2012, 46, 4042-4050.	4.6	235
18	SLUDGE DEWATERING AND DRYING. Drying Technology, 2002, 20, 883-916.	1.7	227

#	Article	IF	Citations
19	Removal of chromium(VI) from wastewater by combined electrocoagulation?electroflotation without a filter. Separation and Purification Technology, 2005, 43, 117-123.	3.9	220
20	The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: A review. Journal of Power Sources, 2016, 304, 81-101.	4.0	216
21	One-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries. Chemical Communications, 2011, 47, 6828.	2.2	214
22	Electrochemical degradation of aqueous solution of Amaranth azo dye on ACF under potentiostatic model. Dyes and Pigments, 2008, 76, 440-446.	2.0	213
23	Electrochemical degradation of bisphenol A on different anodes. Water Research, 2009, 43, 1968-1976.	5.3	212
24	Electrocoagulation and Electroflotation of Restaurant Wastewater. Journal of Environmental Engineering, ASCE, 2000, 126, 858-863.	0.7	209
25	Effect of inorganic matter on reactivity and kinetics of coal pyrolysis. Fuel, 2004, 83, 713-718.	3.4	190
26	Hexagonal microspindle of NH ₂ -MIL-101(Fe) metalâ€"organic frameworks with visible-light-induced photocatalytic activity for the degradation of toluene. RSC Advances, 2016, 6, 4289-4295.	1.7	190
27	Stable Ti/IrOxâ^'Sb2O5â^'SnO2Anode for O2Evolution with Low Ir Content. Journal of Physical Chemistry B, 2001, 105, 4623-4628.	1.2	185
28	Electrochemically Assisted Photocatalytic Degradation of 4-Chlorophenol by ZnFe ₂ O ₄ â^'Modified TiO ₂ Nanotube Array Electrode under Visible Light Irradiation. Environmental Science & Environm	4.6	176
29	Deep Eutectic Solvents for Boosting Electrochemical Energy Storage and Conversion: A Review and Perspective. Advanced Functional Materials, 2021, 31, 2011102.	7.8	172
30	Novel Electrode System for Electroflotation of Wastewater. Environmental Science & Emp; Technology, 2002, 36, 778-783.	4.6	171
31	Investigation on the electrolysis voltage of electrocoagulation. Chemical Engineering Science, 2002, 57, 2449-2455.	1.9	171
32	Graphene-wrapped chromium-MOF(MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li–S batteries. Journal of Materials Chemistry A, 2014, 2, 13509-13512.	5.2	171
33	Performance and mechanism of chromate (VI) adsorption by \hat{l} -FeOOH-coated maghemite (\hat{l} ³ -Fe2O3) nanoparticles. Separation and Purification Technology, 2007, 58, 76-82.	3.9	170
34	Anodic oxidation of dyes at novel Ti/B-diamond electrodes. Chemical Engineering Science, 2003, 58, 995-1001.	1.9	160
35	Ionic liquid-facilitated synthesis and catalytic activity of highly dispersed Ag nanoclusters supported on TiO2. Journal of Materials Chemistry, 2009, 19, 8223.	6.7	160
36	ZnFe2O4 multi-porous microbricks/graphene hybrid photocatalyst: Facile synthesis, improved activity and photocatalytic mechanism. Applied Catalysis B: Environmental, 2013, 142-143, 80-88.	10.8	159

#	Article	IF	CITATIONS
37	Fabrication of Ag/Ag3PO4/TiO2 heterostructure photoelectrodes for efficient decomposition of 2-chlorophenol under visible light irradiation. Journal of Materials Chemistry A, 2013, 1, 9060.	5.2	158
38	High-Performance Ti/BDD Electrodes for Pollutant Oxidation. Environmental Science & Emp; Technology, 2003, 37, 5021-5026.	4.6	156
39	Ultrasmall graphitic carbon nitride quantum dots decorated self-organized TiO2 nanotube arrays with highly efficient photoelectrochemical activity. Applied Catalysis B: Environmental, 2016, 186, 127-135.	10.8	153
40	Comparison of Ti/BDD and Ti/SnO2?Sb2O5 electrodes for pollutant oxidation. Journal of Applied Electrochemistry, 2005, 35, 185-191.	1.5	152
41	Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities. Carbon, 2018, 127, 424-431.	5.4	150
42	Sulfur-rich polymeric materials with semi-interpenetrating network structure as a novel lithium–sulfur cathode. Journal of Materials Chemistry A, 2014, 2, 9280.	5.2	149
43	Electrochemical Behavior of Novel Ti/lrOxâ^'Sb2O5â^'SnO2Anodes. Journal of Physical Chemistry B, 2002, 106, 4364-4369.	1.2	148
44	Effect of Set Potential on Hexavalent Chromium Reduction and Electricity Generation from Biocathode Microbial Fuel Cells. Environmental Science & Envi	4.6	146
45	Removal of cadmium ions from wastewater using innovative electronic waste-derived material. Journal of Hazardous Materials, 2014, 273, 118-123.	6.5	146
46	Theoretical study on concentration polarization in gas separation membrane processes. Journal of Membrane Science, 1999, 153, 243-258.	4.1	143
47	Recent advances in Mn-based oxides as anode materials for lithium ion batteries. RSC Advances, 2014, 4, 23914-23935.	1.7	143
48	Catalytic dechlorination of chlorophenols in water by palladium/iron. Water Research, 2001, 35, 1887-1890.	5.3	142
49	Porous Mn2O3 microsphere as a superior anode material for lithium ion batteries. RSC Advances, 2012, 2, 4645.	1.7	142
50	Shape-controlled fabrication of the porous Co3O4 nanoflower clusters for efficient catalytic oxidation of gaseous toluene. Journal of Hazardous Materials, 2012, 209-210, 385-391.	6.5	142
51	An interwoven MoO ₃ @CNT scaffold interlayer for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 8612-8619.	5.2	141
52	Novel Hierarchically Porous Carbon Materials Obtained from Natural Biopolymer as Host Matrixes for Lithium–Sulfur Battery Applications. ACS Applied Materials & 2014, 6, 13174-13182.	4.0	133
53	Conductive metal–organic framework with redox metal center as cathode for high rate performance lithium ion battery. Journal of Power Sources, 2019, 429, 22-29.	4.0	133
54	Evaluation of bias potential enhanced photocatalytic degradation of 4-chlorophenol with TiO2 nanotube fabricated by anodic oxidation method. Chemical Engineering Journal, 2009, 146, 30-35.	6.6	131

#	Article	IF	CITATIONS
55	Controllable synthesis of spinel nano-ZnMn2O4via a single source precursor route and its high capacity retention as anode material for lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 11987.	6.7	130
56	Improving the electrochemical performance of the LiNi _{0.5} Mn _{1.5} O ₄ spinel by polypyrrole coating as a cathode material for the lithium-ion battery. Journal of Materials Chemistry A, 2015, 3, 404-411.	5.2	130
57	Glass recycling in cement production—an innovative approach. Waste Management, 2002, 22, 747-753.	3.7	129
58	Highly Oriented 1-D ZnO Nanorod Arrays on Zinc Foil:  Direct Growth from Substrate, Optical Properties and Photocatalytic Activities. Journal of Physical Chemistry C, 2008, 112, 7332-7336.	1.5	125
59	Salinity Effect on Mechanical Dewatering of Sludge with and without Chemical Conditioning. Environmental Science & Environment	4.6	121
60	Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation. Chemical Engineering Journal, 2011, 166, 652-661.	6.6	121
61	Bioelectrochemical systems for efficient recalcitrant wastes treatment. Journal of Chemical Technology and Biotechnology, 2011, 86, 481-491.	1.6	121
62	Fe ₃ O ₄ -Decorated Porous Graphene Interlayer for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26264-26273.	4.0	117
63	Stable Ti/RuO2–Sb2O5–SnO2 electrodes for O2 evolution. Electrochimica Acta, 2005, 50, 4155-4159.	2.6	114
64	Ultrasound assisted supercritical fluid extraction of oil and coixenolide from adlay seed. Ultrasonics Sonochemistry, 2007, 14, 219-224.	3.8	114
65	Combined electrocoagulation and electroflotation for removal of fluoride from drinking water. Journal of Hazardous Materials, 2008, 159, 452-457.	6.5	114
66	Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells. Bioresource Technology, 2012, 111, 167-174.	4.8	112
67	Ultrafine Titanium Nitride Sheath Decorated Carbon Nanofiber Network Enabling Stable Lithium Metal Anodes. Advanced Functional Materials, 2019, 29, 1903229.	7.8	112
68	Hollow Fe3O4/C spheres as superior lithium storage materials. Journal of Power Sources, 2012, 197, 305-309.	4.0	111
69	The effects of persulfate treatment on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material. Journal of Power Sources, 2013, 221, 108-113.	4.0	110
70	Nonisothermal Catalytic Liquefaction of Corn Stalk in Subcritical and Supercritical Water. Energy & Samp; Fuels, 2004, 18, 90-96.	2.5	109
71	Preparation of UF and NF poly (phthalazine ether sulfone ketone) membranes for high temperature application. Journal of Membrane Science, 1999, 161, 185-191.	4.1	108
72	Highly-Ordered Magn \tilde{A} ©li Ti4O7 Nanotube Arrays as Effective Anodic Material for Electro-oxidation. Electrochimica Acta, 2015, 153, 316-324.	2.6	108

#	Article	IF	Citations
73	Treatment of textile desizing wastewater by pilot scale nanofiltration membrane separation. Journal of Membrane Science, 1997, 127, 93-99.	4.1	107
74	Improved electrochemical performance of Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} O ₂ by Mg doping for lithium ion battery cathode material. Journal of Materials Chemistry A, 2014, 2, 15015-15021.	5. 2	107
75	Anodic oxidation of Orange II on Ti/BDD electrode: Variable effects. Separation and Purification Technology, 2006, 48, 45-49.	3.9	105
76	Synthesis and Photoinduced Charge-Transfer Properties of a ZnFe ₂ O ₄ -Sensitized TiO ₂ Nanotube Array Electrode. Langmuir, 2011, 27, 3113-3120.	1.6	104
77	Graphene-encapsulated sulfur (GES) composites with a core–shell structure as superior cathode materials for lithium–sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 15142.	5.2	102
78	Oxygen and nitrogen co-doped porous carbon granules enabling dendrite-free lithium metal anode. Energy Storage Materials, 2019, 18, 320-327.	9.5	102
79	Mechanism of arsenic removal using chitosan and nanochitosan. Journal of Colloid and Interface Science, 2014, 416, 1-10.	5.0	100
80	Kinetics and equilibrium studies for the removal of cadmium ions by ion exchange resin. Journal of Environmental Chemical Engineering, 2014, 2, 698-707.	3.3	100
81	Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: An efficient heterojunction for pollutants degradation under solar light. Journal of Hazardous Materials, 2016, 316, 159-168.	6.5	100
82	Product distribution and sulfur behavior in coal pyrolysis. Fuel Processing Technology, 2004, 85, 849-861.	3.7	98
83	Novel phosphorus doped carbon nitride modified TiO ₂ nanotube arrays with improved photoelectrochemical performance. Nanoscale, 2015, 7, 16282-16289.	2.8	96
84	High-performance In2O3@PANI core@shell architectures with ultralong charge carriers lifetime for photocatalytic degradation of gaseous 1,2-dichlorobenzene. Applied Catalysis B: Environmental, 2020, 263, 118278.	10.8	96
85	Separation of water and oil from water-in-oil emulsion by freeze/thaw method. Separation and Purification Technology, 2003, 31, 83-89.	3.9	95
86	Development and characterization of composite nanofiltration membranes and their application in concentration of antibiotics. Separation and Purification Technology, 2003, 30, 27-35.	3.9	94
87	Capability of novel ZnFe2O4 nanotube arrays for visible-light induced degradation of 4-chlorophenol. Chemosphere, 2011, 82, 581-586.	4.2	94
88	Wastewater quality monitoring system using sensor fusion and machine learning techniques. Water Research, 2012, 46, 1133-1144.	5.3	94
89	TiO2 nanotube/Ag–AgBr three-component nanojunction for efficient photoconversion. Journal of Materials Chemistry, 2011, 21, 18067.	6.7	89
90	Magn \tilde{A} © li Ti 4 O 7 modified ceramic membrane for electrically-assisted filtration with antifouling property. Journal of Membrane Science, 2016, 498, 302-314.	4.1	89

#	Article	IF	Citations
91	Recent Advances of Mnâ€Rich LiFe _{1â€} <i>_y</i> Mn <i>_y</i> PO ₄ (0.5 ≤i>y < 1.0) Cathode Materials for High Energy Density Lithium Ion Batteries. Advanced Energy Materials, 2017, 7, 1601958.	10.2	89
92	Hydrogen bonding interactions between ethylene glycol and water: density, excess molar volume, and spectral study. Science in China Series B: Chemistry, 2008, 51, 420-426.	0.8	88
93	Waterâ€Based Isotropically Conductive Adhesives: Towards Green and Lowâ€Cost Flexible Electronics. Advanced Functional Materials, 2011, 21, 4582-4588.	7.8	88
94	Preparation, characterization and photoelectrocatalytic properties of nanocrystalline Fe2O3/TiO2, ZnO/TiO2, and Fe2O3/ZnO/TiO2 composite film electrodes towards pentachlorophenol degradation. Physical Chemistry Chemical Physics, 2004, 6, 659.	1.3	86
95	Customizing coaxial stacking VS ₂ nanosheets for dual-band microwave absorption with superior performance in the C- and K _u -bands. Journal of Materials Chemistry C, 2020, 8, 5923-5933.	2.7	86
96	Structural and photovoltaic properties of highly ordered ZnFe2O4 nanotube arrays fabricated by a facile sol–gel template method. Acta Materialia, 2009, 57, 2684-2690.	3.8	84
97	Self-templated formation of ZnFe ₂ O ₄ double-shelled hollow microspheres for photocatalytic degradation of gaseous o-dichlorobenzene. Journal of Materials Chemistry A, 2017, 5, 8909-8915.	5.2	84
98	Active Sites in Single-Atom Fe–N _{<i>x</i>} –C Nanosheets for Selective Electrochemical Dechlorination of 1,2-Dichloroethane to Ethylene. ACS Nano, 2020, 14, 9929-9937.	7.3	83
99	Osmotic Dehydration Pretreatment in Drying of Fruits and Vegetables. Drying Technology, 2003, 21, 1101-1114.	1.7	82
100	Role of Freeze Drying in Nanotechnology. Drying Technology, 2007, 25, 29-35.	1.7	82
101	Dependency of simultaneous Cr(VI), Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells. Journal of Power Sources, 2015, 273, 1103-1113.	4.0	82
102	Boron and Nitrogen Codoped Nanodiamond as an Efficient Metal-Free Catalyst for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2013, 117, 14992-14998.	1.5	80
103	Nitrogen-rich porous carbon in ultra-high yield derived from activation of biomass waste by a novel eutectic salt for high performance Li-ion capacitors. Carbon, 2020, 161, 25-35.	5.4	80
104	Catalytic wet air oxidation of wastewater containing ammonia and phenol over activated carbon supported Pt catalysts. Catalysis Today, 2003, 88, 37-47.	2.2	77
105	Preparation of supported carbon molecular sieve membrane from novolac phenol–formaldehyde resin. Journal of Membrane Science, 2007, 303, 80-85.	4.1	77
106	Extraction of Huadian oil shale with water in sub- and supercritical states. Fuel, 1999, 78, 645-651.	3.4	76
107	In Situ Assembly of Zeolite Nanocrystals into Mesoporous Aggregate with Single-Crystal-Like Morphology without Secondary Template. Chemistry of Materials, 2008, 20, 1670-1672.	3.2	76
108	The enhanced rate performance of LiFe _{0.5} Mn _{0.5} PO ₄ /C cathode material via synergistic strategies of surfactant-assisted solid state method and carbon coating. Journal of Materials Chemistry A, 2015, 3, 996-1004.	5.2	75

#	Article	IF	CITATIONS
109	In-Plane Highly Dispersed Cu ₂ O Nanoparticles for Seeded Lithium Deposition. Nano Letters, 2019, 19, 4601-4607.	4.5	75
110	CoS-interposed and Ketjen black-embedded carbon nanofiber framework as a separator modulation for high performance Li-S batteries. Chemical Engineering Journal, 2019, 369, 77-86.	6.6	75
111	Insight to the synergistic effect of N-doping level and pore structure on improving the electrochemical performance of sulfur/N-doped porous carbon cathode for Li-S batteries. Carbon, 2019, 144, 745-755.	5.4	75
112	Synthesis of ZnO/TiO2 nanotube composite film by a two-step route. Materials Letters, 2008, 62, 3691-3693.	1.3	73
113	Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells. Bioresource Technology, 2013, 128, 539-546.	4.8	72
114	Graphene Oxide-Immobilized NH ₂ -Terminated Silicon Nanoparticles by Cross-Linked Interactions for Highly Stable Silicon Negative Electrodes. ACS Applied Materials & Interfaces, 2014, 6, 11277-11285.	4.0	72
115	Synthesis and photo-catalytic degradation property of nanostructured-ZnO with different morphology. Materials Letters, 2008, 62, 2359-2362.	1.3	70
116	Correlations of WO3 species and structure with the catalytic performance of the selective oxidation of cyclopentene to glutaraldehyde on WO3/TiO2 catalysts. Chemical Engineering Journal, 2010, 159, 242-246.	6.6	70
117	Improving the Electrochemical Performance of Si Nanoparticle Anode Material by Synergistic Strategies of Polydopamine and Graphene Oxide Coatings. Journal of Physical Chemistry C, 2015, 119, 1720-1728.	1.5	68
118	Heat and mass transfer in batch fluidized-bed drying of porous particles. Chemical Engineering Science, 2000, 55, 1857-1869.	1.9	67
119	Theoretical study of microwave heating patterns on batch fluidized bed drying of porous material. Chemical Engineering Science, 2001, 56, 6823-6835.	1.9	66
120	Pilot scale membrane separation of electroplating waste water by reverse osmosis. Journal of Membrane Science, 1997, 123, 235-242.	4.1	65
121	Oxidative degradation of azo dye by hydrogen peroxide electrogenerated in situ on anthraquinonemonosulphonate/polypyrrole composite cathode with heterogeneous CuO/\hat{l}^3 -Al2O3 catalyst. Applied Catalysis B: Environmental, 2011, 106, 370-378.	10.8	65
122	Porous LiMn2O4 microspheres as durable high power cathode materials for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 8170.	5.2	65
123	Toward High Performance Allâ€Solidâ€State Lithium Batteries with Highâ€Voltage Cathode Materials: Design Strategies for Solid Electrolytes, Cathode Interfaces, and Composite Electrodes. Advanced Energy Materials, 2021, 11, 2003154.	10.2	65
124	Synthesis, characterization and adsorptive performance of MgFe2O4 nanospheres for SO2 removal. Journal of Hazardous Materials, 2010, 184, 704-709.	6.5	64
125	Novel Germanium/Polypyrrole Composite for High Power Lithium-ion Batteries. Scientific Reports, 2014, 4, 6095.	1.6	63
126	Wet Oxidation of High-Concentration Reactive Dyes. Industrial & Engineering Chemistry Research, 1999, 38, 1837-1843.	1.8	62

#	Article	IF	Citations
127	Durable polydopamine-coated porous sulfur core–shell cathode for high performance lithium–sulfur batteries. Journal of Power Sources, 2015, 300, 386-394.	4.0	62
128	A new clean approach for production of cobalt dihydroxide from aqueous Co(II) using oxygen-reducing biocathode microbial fuel cells. Journal of Cleaner Production, 2015, 86, 441-446.	4.6	61
129	Ultrathin sheets of MoS2/g-C3N4 composite as a good hosting material of sulfur for lithium–sulfur batteries. Journal of Power Sources, 2019, 431, 93-104.	4.0	61
130	Surface engineering in improving activity of Pt nanocubes for ammonia electrooxidation reaction. Applied Catalysis B: Environmental, 2020, 269, 118821.	10.8	58
131	Wet Air Oxidation of Desizing Wastewater from the Textile Industry. Industrial & Engineering Chemistry Research, 2000, 39, 2896-2901.	1.8	57
132	Heat and mass transfer model of dielectric-material-assisted microwave freeze-drying of skim milk with hygroscopic effect. Chemical Engineering Science, 2005, 60, 6542-6550.	1.9	57
133	Numerical simulation of conjugate heat and mass transfer process within cylindrical porous media with cylindrical dielectric cores in microwave freeze-drying. International Journal of Heat and Mass Transfer, 2005, 48, 561-572.	2.5	57
134	Electrochemical degradation of Amaranth aqueous solution on ACF. Journal of Hazardous Materials, 2006, 137, 1182-1188.	6.5	57
135	Bioanodes/biocathodes formed at optimal potentials enhance subsequent pentachlorophenol degradation and power generation from microbial fuel cells. Bioelectrochemistry, 2013, 94, 13-22.	2.4	54
136	On the degradability of printing and dyeing wastewater by wet air oxidation. Water Research, 2001, 35, 2078-2080.	5.3	53
137	Physical Interpretation of Solids Drying: An Overview on Mathematical Modeling Research. Drying Technology, 2007, 25, 659-668.	1.7	53
138	Hydrogen Bonding and Interaction in the Absorption Processes of Sulfur Dioxide in Ethylene Glycol + Water Binary Desulfurization System. Industrial & Engineering Chemistry Research, 2009, 48, 1287-1291.	1.8	53
139	Porous "brick-like―NiFe2O4 nanocrystals loaded with Ag species towards effective degradation of toluene. Chemical Engineering Journal, 2010, 165, 64-70.	6.6	53
140	Preparation of carbon adsorbents with high surface area and a model for calculating surface area. Carbon, 2002, 40, 277-284.	5.4	52
141	Synergetic degradation of 2,4-D by integrated photo- and electrochemical catalysis on a Pt doped TiO2/Ti electrode. Separation and Purification Technology, 2004, 34, 73-79.	3.9	52
142	Carbon-Encapsulated Sn@N-Doped Carbon Nanotubes as Anode Materials for Application in SIBs. ACS Applied Materials & Discrete Applied & Discrete A	4.0	52
143	Carbon Aerogels for Environmental Cleanâ€Up. European Journal of Inorganic Chemistry, 2019, 2019, 3126-3141.	1.0	52
144	Effects of Surface Features on Sulfur Dioxide Adsorption on Calcined NiAl Hydrotalcite-like Compounds. Environmental Science &	4.6	51

#	Article	IF	CITATIONS
145	Degradation of pentachlorophenol with the presence of fermentable and non-fermentable co-substrates in a microbial fuel cell. Bioresource Technology, 2011, 102, 8762-8768.	4.8	51
146	An appropriate amount of new spinel phase induced by control synthesis for the improvement of electrochemical performance of Li-rich layered oxide cathode material. Electrochimica Acta, 2020, 330, 135240.	2.6	51
147	Combined effects of enrichment procedure and non-fermentable or fermentable co-substrate on performance and bacterial community for pentachlorophenol degradation in microbial fuel cells. Bioresource Technology, 2012, 120, 120-126.	4.8	50
148	Effect of Competing Anions on Arsenate Adsorption onto Maghemite Nanoparticles. Chinese Journal of Chemical Engineering, 2012, 20, 505-514.	1.7	50
149	Heat and mass transfer during low intensity convection drying. Chemical Engineering Science, 1999, 54, 3899-3908.	1.9	49
150	A scalable slurry process to fabricate a 3D lithiophilic and conductive framework for a high performance lithium metal anode. Journal of Materials Chemistry A, 2019, 7, 13225-13233.	5.2	49
151	N-doped carbon-coated hollow carbon nanofibers with interspersed TiO2 for integrated separator of Li-S batteries. Electrochimica Acta, 2019, 297, 641-649.	2.6	49
152	Numerical Investigation on Dielectric Material Assisted Microwave Freeze-Drying of Aqueous Mannitol Solution. Drying Technology, 2003, 21, 995-1017.	1.7	47
153	Mineralization of pentachlorophenol with enhanced degradation and power generation from air cathode microbial fuel cells. Biotechnology and Bioengineering, 2012, 109, 2211-2221.	1.7	47
154	One-dimensional structured IrO2 nanorods modified membrane for electrochemical anti-fouling in filtration of oily wastewater. Separation and Purification Technology, 2015, 156, 931-941.	3.9	47
155	Anomalous Enhancement of Liâ€O ₂ Battery Performance with Li ₂ O ₂ Films Assisted by NiFeO <i>_x</i> Nanofiber Catalysts: Insights into Morphology Control. Advanced Functional Materials, 2016, 26, 8290-8299.	7.8	47
156	Fe3C/Fe nanoparticles embedded in N-doped porous carbon nanosheets and graphene: A thin functional interlayer for PP separator to boost performance of Li-S batteries. Chemical Engineering Journal, 2021, 415, 129001.	6.6	47
157	Preparation of carbon molecular sieve membrane from phenol–formaldehyde Novolac resin. Carbon, 2002, 40, 465-467.	5.4	46
158	Specially designed carbon black nanoparticle-sulfur composite cathode materials with a novel structure for lithium–sulfur battery application. Journal of Power Sources, 2015, 285, 478-484.	4.0	45
159	Preparation and characterization of quaterinized chitosan/poly(acrylonitrile) composite nanofiltration membrane from anhydride mixture cross-linking. Separation and Purification Technology, 2008, 58, 393-399.	3.9	44
160	Synthesis of Cu2O nano-whiskers by a novel wet-chemical route. Materials Letters, 2008, 62, 886-888.	1.3	44
161	Unique three dimensional architecture using a metal-free semiconductor cross-linked bismuth vanadate for efficient photoelectrochemical water oxidation. Nano Energy, 2016, 24, 148-157.	8.2	44
162	Effect of Dielectric Material on Microwave Freeze Drying of Skim Milk. Drying Technology, 2005, 23, 317-340.	1.7	43

#	Article	IF	CITATIONS
163	Theoretical Study on Microwave Freeze-Drying of an Aqueous Pharmaceutical Excipient with the Aid of Dielectric Material. Drying Technology, 2005, 23, 2147-2168.	1.7	43
164	Effect of mineral on sulfur behavior during pressurized coal pyrolysis. Fuel Processing Technology, 2004, 85, 863-871.	3.7	42
165	Active and Stable Tiâ^•Siâ^•BDD Anodes for Electro-oxidation. Journal of the Electrochemical Society, 2006, 153, J80.	1.3	42
166	Electrostatic shield effect: an effective way to suppress dissolution of polysulfide anions in lithium–sulfur battery. Journal of Materials Chemistry A, 2014, 2, 15938-15944.	5.2	42
167	Gasâ^'Liquid Equilibrium Data for the Mixture Gas of Sulfur Dioxide/Nitrogen with Ethylene Glycol at Temperatures from (298.15 to 313.15) K under Low Pressures. Journal of Chemical & Data, 2008, 53, 1479-1485.	1.0	41
168	Sub-micrometer-sized LiMn1.5Ni0.5O4 spheres as high rate cathode materials for long-life lithium ion batteries. Electrochemistry Communications, 2013, 27, 92-95.	2.3	41
169	The superior cycle and rate performance of a novel sulfur cathode by immobilizing sulfur into porous N-doped carbon microspheres. Chemical Communications, 2014, 50, 10468-10470.	2.2	41
170	Hydrazine Detection during Ammonia Electro-oxidation Using an Aggregation-Induced Emission Dye. Journal of the American Chemical Society, 2021, 143, 2433-2440.	6.6	41
171	Sodiumâ€rich <scp>NASICON</scp> â€structured cathodes for boosting the energy density and lifespan of sodiumâ€freeâ€anode sodium metal batteries. InformaÄnÃ-Materiály, 2022, 4, .	8.5	41
172	Photocatalytic oxidation of cyclohexane over TiO2 nanoparticles by molecular oxygen under mild conditions. Journal of Chemical Technology and Biotechnology, 2003, 78, 1246-1251.	1.6	40
173	High-quality diamond film deposition on a titanium substrate using the hot-filament chemical vapor deposition method. Diamond and Related Materials, 2007, 16, 1530-1540.	1.8	40
174	Facile solution synthesis and characterization of porous cubic-shaped superstructure of ZnAl2O4. Materials Letters, 2011, 65, 194-197.	1.3	40
175	One-pot synthesis of carbon-coated nanosized LiTi2(PO4)3 as anode materials for aqueous lithium ion batteries. Journal of Power Sources, 2015, 293, 562-569.	4.0	40
176	Facile synthesis of ZnO/Zn2TiO4 core/shell nanowires for photocatalytic oxidation of acetone. Journal of Hazardous Materials, 2010, 184, 864-868.	6.5	38
177	Freeze drying with dielectricâ€materialâ€assisted microwave heating. AICHE Journal, 2007, 53, 3077-3088.	1.8	37
178	A surfactant-assisted synthesis route for scalable preparation of high performance of LiFe0.15Mn0.85PO4/C cathode using bimetallic precursor. Journal of Power Sources, 2014, 265, 223-230.	4.0	37
179	Ni/Mn ratio and morphology-dependent crystallographic facet structure and electrochemical properties of the high-voltage spinel LiNi _{0.5} Mn _{1.5} O ₄ cathode material. RSC Advances, 2015, 5, 25988-25997.	1.7	37
180	Kinetic study into the wet air oxidation of printing and dyeing wastewater. Separation and Purification Technology, 2003, 31, 71-76.	3.9	36

#	Article	IF	Citations
181	Surface photovoltage properties and photocatalytic activities of nanocrystalline CoFe2O4 particles with porous superstructure fabricated by a modified chemical coprecipitation method. Journal of Nanoparticle Research, 2011, 13, 2147-2155.	0.8	36
182	Maghemite nanoparticles for As(V) removal: desorption characteristics and adsorbent recovery. Environmental Technology (United Kingdom), 2012, 33, 1927-1936.	1.2	36
183	In-situ hydrothermal synthesis of Na 3 MnCO 3 PO 4 /rGO hybrid as a cathode for Na-ion battery. Electrochimica Acta, 2016, 208, 188-194.	2.6	36
184	Antifouling ceramic membrane electrode modified by Magn \tilde{A} ©li Ti 4 O 7 for electro-microfiltration of humic acid. Separation and Purification Technology, 2017, 185, 61-71.	3.9	36
185	Na-ion conducting gel polymer membrane for flexible supercapacitor application. Electrochimica Acta, 2020, 330, 135322.	2.6	36
186	Heat and mass transfer in fixed-bed drying. Chemical Engineering Science, 1999, 54, 4233-4243.	1.9	35
187	Stable spinel type cobalt and copper oxide electrodes for O2 and H2 evolutions in alkaline solution. Electrochimica Acta, 2010, 55, 8197-8206.	2.6	35
188	Synergies of the crystallinity and conductive agents on the electrochemical properties of the hollow Fe3O4 spheres. Electrochimica Acta, 2012, 76, 495-503.	2.6	35
189	Synthesis of a novel highly effective flame retardant containing multivalent phosphorus and its application in unsaturated polyester resins. RSC Advances, 2016, 6, 86632-86639.	1.7	35
190	Ball mill assisted synthesis of Na 3 MnCO 3 PO 4 nanoparticles anchored on reduced graphene oxide for sodium ion battery cathodes. Electrochimica Acta, 2016, 220, 683-689.	2.6	35
191	Restructured rimous copper foam as robust lithium host. Energy Storage Materials, 2020, 26, 250-259.	9.5	34
192	Conjugate heat and mass transfer process within porous media with dielectric cores in microwave freeze drying. Chemical Engineering Science, 2004, 59, 2921-2928.	1.9	33
193	High-rate and long-life performance of a truncated spinel cathode material with off-stoichiometric composition at elevated temperature. Electrochimica Acta, 2017, 225, 198-206.	2.6	33
194	Facile Synthesis of Antâ€Nestâ€Like Porous Duplex Copper as Deeply Cycling Host for Lithium Metal Anodes. Small, 2020, 16, e2001784.	5.2	33
195	Ultrathin Fe–N –C single-atom catalysts with bifunctional active site for simultaneous production of ethylene and aromatic chlorides. Nano Energy, 2021, 80, 105532.	8.2	33
196	MS2 Inactivation by Chloride-Assisted Electrochemical Disinfection. Journal of Environmental Engineering, ASCE, 2006, 132, 13-22.	0.7	32
197	Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations. Bioresource Technology, 2011, 102, 9206-9215.	4.8	32
198	Influence of relative humidity on the structure and electrochemical performance of sustainable LiFeSO ₄ F electrodes for Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 16988-16997.	5 . 2	32

#	Article	IF	CITATIONS
199	Investigation of Tiâ^IrO[sub 2]-Sb[sub 2]O[sub 5]-SnO[sub 2] Electrodes for O[sub 2] Evolution. Journal of the Electrochemical Society, 2005, 152, J59.	1.3	31
200	Investigation of the Effect of Extra Lithium Addition and Postannealing on the Electrochemical Performance of High-Voltage Spinel LiNi _{0.5} Mn _{1.5} O ₄ Cathode Material. Journal of Physical Chemistry C, 2014, 118, 15581-15589.	1.5	31
201	A biscuit-like separator enabling high performance lithium batteries by continuous and protected releasing of NO3â° in carbonate electrolyte. Energy Storage Materials, 2020, 24, 229-236.	9.5	31
202	Effect of solvent swelling on liquefaction of Xinglong coal at less severe conditions. Fuel Processing Technology, 2000, 68, 33-43.	3.7	30
203	Enhanced Electro-osmotic Dewatering of Fine Particle Suspension Using a Rotating Anode. Industrial & Lamp; Engineering Chemistry Research, 2001, 40, 1859-1863.	1.8	30
204	Capacitive transducer for in-mold monitoring of injection molding. Polymer Engineering and Science, 2004, 44, 1571-1578.	1.5	29
205	Facile fabrication, characterization, and enhanced photoelectrocatalytic degradation performance of highly oriented TiO2 nanotube arrays. Journal of Nanoparticle Research, 2009, 11, 2153-2162.	0.8	29
206	Two Dimensional WS ₂ /C Nanosheets as a Polysulfides Immobilizer for High Performance Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2019, 166, A5386-A5395.	1.3	29
207	Cyclodextrin-Integrated PEO-Based Composite Solid Electrolytes for High-Rate and Ultrastable All-Solid-State Lithium Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 57380-57391.	4.0	29
208	Theoretical Study of Fluidized-Bed Drying with Microwave Heating. Industrial & Engineering Chemistry Research, 2000, 39, 775-782.	1.8	28
209	SIMULATION OF FLUIDIZED-BED DRYING OF CARROT WITH MICROWAVE HEATING. Drying Technology, 2002, 20, 1855-1867.	1.7	28
210	Submerged membrane bioreactor in treatment of simulated restaurant wastewater. Separation and Purification Technology, 2012, 88, 184-190.	3.9	28
211	CoFe -CoFe2O4/N-doped carbon nanocomposite derived from in situ pyrolysis of a single source precursor as a superior bifunctional electrocatalyst for water splitting. Electrochimica Acta, 2018, 262, 18-26.	2.6	28
212	Finite Element Analysis of Sealing Performance of Rubber D-Ring Seal in High-Pressure Hydrogen Storage Vessel. Journal of Failure Analysis and Prevention, 2018, 18, 846-855.	0.5	28
213	Boosting Electrocatalytic Nitrogen Fixation with Co–N ₃ Site-Decorated Porous Carbon. ACS Sustainable Chemistry and Engineering, 2020, 8, 13430-13439.	3.2	28
214	Ultrathin Nanosheets of Organic-Modified \hat{l}^2 -Ni(OH) ₂ with Excellent Thermal Stability: Fabrication and Its Reinforcement Application in Polymers. ACS Applied Materials & Samp; Interfaces, 2015, 7, 14603-14613.	4.0	27
215	Initiated Chemical Vapor Deposition of Poly(furfuryl methacrylate). Macromolecular Rapid Communications, 2007, 28, 2205-2209.	2.0	26
216	Hybrids of aluminum hypophosphite and ammonium polyphosphate: Highly effective flame retardant system for unsaturated polyester resin. Polymer Composites, 2018, 39, 1763-1770.	2.3	26

#	Article	IF	CITATIONS
217	A thin and multifunctional CoS@g-C3N4/Ketjen black interlayer deposited on polypropylene separator for boosting the performance of lithium-sulfur batteries. Journal of Colloid and Interface Science, 2022, 608, 470-481.	5.0	26
218	Copper-ion exchanged Ti-pillared clays for selective catalytic reduction of NO by propylene. Chemical Engineering Journal, 2011, 168, 1128-1133.	6.6	24
219	Fabrication of High Conductive S/C Cathode by Sulfur Infiltration into Hierarchical Porous Carbon/Carbon Fiber Weave-Structured Materials via Vapor-Melting Method. Electrochimica Acta, 2014, 127, 123-131.	2.6	24
220	Ultra-small nanoparticles of MgTi ₂ O ₅ embedded in carbon rods with superior rate performance for sodium ion batteries. Chemical Communications, 2015, 51, 3545-3548.	2.2	24
221	CoO functionalized IrO2-Sb2O5-SnO2 anode with an enhanced activity and stability for electrocatalytic oxygen evolution. Journal of Alloys and Compounds, 2017, 696, 257-265.	2.8	24
222	Multiple regulations of Mn-based oxides in boosting peroxymonosulfate activation for norfloxacin removal. Applied Catalysis A: General, 2019, 584, 117170.	2.2	24
223	Gasâ^Liquid Equilibrium Data for a Mixture Gas of Sulfur Dioxide + Nitrogen with Ethylene Glycol Aqueous Solutions at 298.15 K and 123.15 kPa. Journal of Chemical & Data, 2008, 53, 2372-2374.	1.0	23
224	Freezeâ€drying of aqueous solution frozen with prebuilt pores. AICHE Journal, 2015, 61, 2048-2057.	1.8	23
225	Net-Structured Filter of Co(OH) ₂ -Anchored Carbon Nanofibers with Ketjen Black for High Performance Li–S Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 17099-17107.	3.2	23
226	Effect of plasma treatment on surface properties of TiO2 nanoparticulate films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 262, 181-186.	2.3	22
227	Facile solution synthesis and characterization of CaCO3 microspheres with urchin-shaped structure. Materials Letters, 2010, 64, 71-73.	1.3	22
228	Uniform \hat{l} ±-Fe2O3 nanotubes fabricated for adsorption and photocatalytic oxidation of naphthalene. Materials Chemistry and Physics, 2011, 129, 683-687.	2.0	22
229	Surface photovoltage property of magnesium ferrite/hematite heterostructured hollow nanospheres prepared with one-pot strategy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 403, 35-40.	2.3	22
230	Treatment of Restaurant Wastewater by Pilot-Scale Electrocoagulation-Electroflotation: Optimization of Operating Conditions. Journal of Environmental Engineering, ASCE, 2013, 139, 1004-1016.	0.7	22
231	Horizontal Stress Release for Protuberanceâ€Free Li Metal Anode. Advanced Functional Materials, 2020, 30, 2002522.	7.8	22
232	A novel eutectic solvent precursor for efficiently preparing N-doped hierarchically porous carbon nanosheets with unique surface functional groups and micropores towards dual-carbon lithium-ion capacitors. Journal of Materials Chemistry A, 2021, 9, 13631-13641.	5.2	22
233	Factor Analysis Scales of Generalized Amino Acid Information as Applied in Predicting Interactions between the Human Amphiphysin-1 SH3 Domains and Their Peptide Ligands. Chemical Biology and Drug Design, 2008, 71, 345-351.	1.5	21
234	Gasâ^'Liquid Equilibrium Data for the Mixture Gas of Sulfur Dioxide + Nitrogen with Poly(ethylene) Tj ETQq0 0 0 0	gBT /Over 1.0	lock 10 Tf 50 21

#	Article	IF	CITATIONS
235	Issues in Freeze Drying of Aqueous Solutions. Chinese Journal of Chemical Engineering, 2012, 20, 551-559.	1.7	21
236	Sulfur impregnated in tunable porous N-doped carbon as sulfur cathode: effect of pore size distribution. Electrochimica Acta, 2015, 173, 282-289.	2.6	21
237	Embedding Co ₂ P Nanoparticles in N-Doped Carbon Nanotubes Grown on Porous Carbon Polyhedra for High-Performance Lithium-Ion Batteries. Industrial & Engineering Chemistry Research, 2018, 57, 13019-13025.	1.8	21
238	Multiscale Understanding of Surface Structural Effects on Highâ€Temperature Operational Resiliency of Layered Oxide Cathodes. Advanced Materials, 2022, 34, e2107326.	11.1	21
239	Rational design of a heterogeneous double-layered composite solid electrolyte via synergistic strategies of asymmetric polymer matrices and functional additives to enable 4.5†V all-solid-state lithium batteries with superior performance. Energy Storage Materials, 2022, 45, 1062-1073.	9.5	21
240	On the ratio of heat to mass transfer coefficient for water evaporation and its impact upon drying modeling. International Journal of Heat and Mass Transfer, 2002, 45, 4369-4372.	2.5	20
241	Zeolite with tunable intracrystal mesoporosity synthesized with carbon aerogel as a secondary template. Microporous and Mesoporous Materials, 2008, 113, 481-489.	2.2	20
242	<i>In situ</i> synthesis of a novel transparent poly (methyl methacrylate) resin with markedly enhanced flame retardancy. Polymers for Advanced Technologies, 2016, 27, 266-272.	1.6	20
243	An environmentally friendly strategy to prepare nitrogen-rich hierarchical porous carbon for high-performance supercapacitors. Chemical Communications, 2020, 56, 2182-2185.	2.2	20
244	Pore structure control of phenol–formaldehyde based carbon microfiltration membranes. Carbon, 2004, 42, 679-681.	5 . 4	19
245	Drying of a Dilute Suspension in a Revolving Flow Fluidized Bed of Inert Particles. Drying Technology, 2004, 22, 363-376.	1.7	19
246	Cobalt leaching from lithium cobalt oxide in microbial electrolysis cells. Chemical Engineering Journal, 2013, 220, 72-80.	6.6	19
247	A novel approach to synthesize ultrasmall Cu doped Zn–In–Se nanocrystal emitters in a colloidal system. Nanoscale, 2014, 6, 3403-3409.	2.8	19
248	3-D structured SnO ₂ –polypyrrole nanotubes applied in Na-ion batteries. RSC Advances, 2016, 6, 103124-103131.	1.7	19
249	Graphene-linked graphitic carbon nitride/TiO2 nanowire arrays heterojunction for efficient solar-driven water splitting. Journal of Applied Electrochemistry, 2016, 46, 807-817.	1.5	19
250	Bean curd wastewater treatment by membrane separation. Separation and Purification Technology, 1999, 15, 175-180.	3.9	18
251	Treatment of Desizing Wastewater Containing Poly(vinyl alcohol) by Wet Air Oxidation. Industrial & Lamp; Engineering Chemistry Research, 2000, 39, 1193-1197.	1.8	18
252	Catalytic Liquefaction of Coal with Highly Dispersed Fe2S3 Impregnated in-Situ. Energy & Ener	2.5	18

#	Article	lF	CITATIONS
253	Proper Hot Filament CVD Conditions for Fabrication of Ti-Boron Doped Diamond Electrodes. Journal of the Electrochemical Society, 2004, 151, B214.	1.3	18
254	Long-Term Stable Tiâ^•BDD Electrode Fabricated with HFCVD Method Using Two-Stage Substrate Temperature. Journal of the Electrochemical Society, 2007, 154, D657.	1.3	18
255	Effects of the geometry and operating temperature on the stability of Ti/lrO2–SnO2–Sb2O5 electrodes for O2 evolution. Journal of Applied Electrochemistry, 2010, 40, 1797-1805.	1.5	18
256	Synthesis, structures and photocatalytic properties of a mononuclear copper complex with pyridine-carboxylato ligands. Inorganic Chemistry Communication, 2010, 13, 526-528.	1.8	18
257	AgInS2 nanoparticles modified TiO2 nanotube array electrodes: Ultrasonic-assisted SILAR preparation and mechanism of enhanced photoelectrocatalytic activity. Molecular Catalysis, 2017, 442, 97-106.	1.0	18
258	Multiphase transport modeling for freeze-drying of aqueous material frozen with prebuilt porosity. International Journal of Heat and Mass Transfer, 2018, 122, 1353-1365.	2.5	18
259	Preparation and characterization of superparamagnetic nanocrystalline cobalt ferrite materials. Journal of Materials Science Letters, 2002, 21, 1881-1883.	0.5	17
260	FTIR study of the photocatalytic degradation of gaseous benzene over UV-irradiated TiO2 nanoballs synthesized by hydrothermal treatment in alkaline solution. Materials Research Bulletin, 2010, 45, 1889-1893.	2.7	17
261	Gasâ^Liquid Equilibrium Data for Sulfur Dioxide + Nitrogen in Diethylene Glycol + Water at 298.15 K and 123.15 kPa. Journal of Chemical & Engineering Data, 2010, 55, 1446-1448.	1.0	17
262	A Carbonâ€Sulfur Hybrid with Pomegranateâ€like Structure for Lithiumâ€Sulfur Batteries. Chemistry - an Asian Journal, 2016, 11, 1343-1347.	1.7	17
263	Porous Anatase-TiO ₂ (B) Dual-Phase Nanorods Prepared from <i>in Situ</i> Pyrolysis of a Single Molecule Precursor Offer High Performance Lithium-Ion Storage. Inorganic Chemistry, 2018, 57, 12245-12254.	1.9	17
264	Synergistic effect of composite carbon source and simple pre-calcining process on significantly enhanced electrochemical performance of porous LiFe0.5Mn0.5PO4/C agglomerations. Electrochimica Acta, 2019, 314, 102-114.	2.6	17
265	Toward a practical Li-S battery enabled by synergistic confinement of a nitrogen-enriched porous carbon as a multifunctional interlayer and sulfur-host material. Journal of Electroanalytical Chemistry, 2020, 858, 113797.	1.9	17
266	The synergistic effect of P-doping and carbon coating for boosting electrochemical performance of TiO2 nanospheres for sodium-ion batteries. Chinese Chemical Letters, 2021, 32, 3847-3851.	4.8	17
267	LUBRICATING OIL SLUDGE AND ITS DEMULSIFICATION. Drying Technology, 2002, 20, 1009-1018.	1.7	16
268	Polysulfide rubber-based sulfur-rich composites as cathode material for high energy lithium/sulfur batteries. International Journal of Hydrogen Energy, 2014, 39, 16067-16072.	3.8	16
269	Origin of the High Capacity Manganese-Based Oxyfluoride Electrodes for Rechargeable Batteries. Chemistry of Materials, 2018, 30, 5362-5372.	3.2	16
270	<i>In situ</i> grown α-Cos/Co heterostructures on nitrogen doped carbon polyhedra enabling the trapping and reaction-intensification of polysulfides towards high performance lithium sulfur batteries. Nanoscale, 2019, 11, 20579-20588.	2.8	16

#	Article	IF	CITATIONS
271	Homogeneous Catalytic Wet-Air Oxidation for the Treatment of Textile Wastewater. Water Environment Research, 2000, 72, 147-151.	1.3	15
272	Fabrication and surface photovoltage study of hematite microparticles with hollow spindle-shaped structure. Applied Surface Science, 2012, 258, 7099-7104.	3.1	15
273	A new approach to preparing porous carbons with controllable pore structure and morphology. Chemical Communications, 2014, 50, 14824-14827.	2.2	15
274	Triggering the In Situ Electrochemical Formation of High Capacity Cathode Material from MnO. Advanced Energy Materials, 2017, 7, 1602200.	10.2	15
275	Linear free energy relationships for dechlorination of aromatic chlorides by Pd/Fe. Chemosphere, 2003, 50, 1275-1279.	4.2	14
276	Salinity effect on freeze/thaw conditioning of activated sludge with and without chemical addition. Separation and Purification Technology, 2004, 34, 155-164.	3.9	14
277	Electrochemical Wastewater Treatment Processes. , 2007, , 57-106.		14
278	Biomass waste-derived nitrogen-rich hierarchical porous carbon offering superior capacitive behavior in an environmentally friendly aqueous MgSO4 electrolyte. Journal of Colloid and Interface Science, 2019, 537, 475-485.	5.0	14
279	Synthesis of low surface energy thin film of polyepichlorohydrin-triazole-ols. Journal of Colloid and Interface Science, 2020, 575, 452-463.	5.0	14
280	Dendrite-free lithium deposition enabled by a vertically aligned graphene pillar architecture. Carbon, 2021, 185, 152-160.	5.4	14
281	High entropy oxide nanofiber by electrospun method and its application for lithium battery anode material. International Journal of Applied Ceramic Technology, 2022, 19, 2004-2015.	1.1	14
282	Simultaneous photocatalytic removal of ammonium and nitrite in water using Ce3+–Ag+ modified TiO2. Separation and Purification Technology, 2009, 67, 244-248.	3.9	13
283	Highly oriented SnS2/RGO/Ag heterostructures for boosting photoeletrochemical and photocatalytic performances via schottky and RGO-n dual-heterojunctions interfacial effects. Applied Catalysis A: General, 2018, 563, 118-126.	2.2	13
284	Ultrahigh capacity and cyclability of dual-phase TiO ₂ nanowires with low working potential at room and subzero temperatures. Journal of Materials Chemistry A, 2021, 9, 9256-9265.	5.2	13
285	Behavior of Electro-osmotic Dewatering of Biological Sludge with Salinity. Separation Science and Technology, 2003, 38, 903-915.	1.3	12
286	iCVD growth of poly(N-vinylimidazole) and poly(N-vinylimidazole-co-N-vinylpyrrolidone). Thin Solid Films, 2009, 517, 3539-3542.	0.8	12
287	Fabrication and photo-electrocatalytic properties of highly oriented titania nanotube arrays with {101} crystal face. Separation and Purification Technology, 2009, 67, 135-140.	3.9	12
288	Experimental Study on the Heat Transfer Enhancement of Oscillating-Flow Heat Pipe by Acoustic Cavitation. Drying Technology, 2009, 27, 542-547.	1.7	12

#	Article	IF	CITATIONS
289	Genetic engineering of yeasts to improve ethanol production from xylose. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 32-39.	2.7	12
290	Electrochemically activated MnO as a cathode material for sodium-ion batteries. Electrochemistry Communications, 2017, 77, 81-84.	2.3	12
291	Experimental and numerical investigations on freeze-drying of porous media with prebuilt porosity. Chemical Physics Letters, 2018, 700, 80-87.	1.2	12
292	Effects of oxygen functional groups on electrochemical performance of carbon materials for dechlorination of 1,2-dichloroethane to ethylene. Chemical Engineering Journal, 2022, 434, 134547.	6.6	12
293	Through Drying of Paper. Drying Technology, 1997, 15, 295-314.	1.7	11
294	Isolation and identification of the thermophilic alkaline desulphuricant strain. Science in China Series B: Chemistry, 2008, 51, 158-165.	0.8	11
295	Electroflotation. , 2010, , 263-277.		11
296	Surfactant-free carbon black@graphene conductive ink for flexible electronics. Journal of Materials Science, 2019, 54, 11157-11167.	1.7	11
297	Thermalâ€oxidative aging performance and life prediction of polyethylene pipe under cyclic and constant internal pressure. Journal of Applied Polymer Science, 2019, 136, 47766.	1.3	11
298	Ether-Induced Phase Transition toward Stabilized Layered Structure of MoS ₂ with Extraordinary Sodium Storage Performance., 2022, 4, 1341-1349.		11
299	Integrating N-Doped Porous Carbon-Encapsulated Ultrafine SnO ₂ with MXene Nanosheets via Electrostatic Self-Assembly as a Superior Anode Material for Lithium Ion Capacitors. ACS Applied Energy Materials, 2022, 5, 8198-8210.	2.5	11
300	Numerical investigation on freeze-drying of aqueous material frozen with pre-built pores. Chinese Journal of Chemical Engineering, 2016, 24, 116-125.	1.7	10
301	Wave-absorbing material aided microwave freeze-drying of vitamin C solution frozen with preformed pores. Drying Technology, 2021, 39, 2025-2038.	1.7	10
302	Impingement Drying of Paper. Drying Technology, 1995, 13, 1331-1344.	1.7	9
303	Coal liquefaction with in situ impregnated Fe2(MoS4)3 bimetallic catalyst. Fuel, 2002, 81, 1521-1524.	3.4	9
304	A novel lithium–sulfur battery cathode from butadiene rubber-caged sulfur-rich polymeric composites. RSC Advances, 2015, 5, 38792-38800.	1.7	9
305	Preparation of graphene <i>via</i> wet ball milling and <i>in situ</i> reversible modification with the Diels–Alder reaction. New Journal of Chemistry, 2020, 44, 1236-1244.	1.4	9
306	Ammonia gas-sensing characteristics of fluorescence-based poly(2-(acetoacetoxy)ethyl methacrylate) thin films. Journal of Colloid and Interface Science, 2012, 373, 94-101.	5.0	8

#	Article	IF	Citations
307	Recent Developments of Graphene Electrodes in Bioelectrochemical Systems. Wuli Huaxue Xuebao/Acta Physico - Chimica Sinica, 2013, 29, 889-896.	2.2	8
308	Importance of synergistic role of cobalt and aluminum on a greatly improved electrochemical performance of Li-rich oxyfluoride spinel at elevated-temperature. Journal of Alloys and Compounds, 2017, 728, 612-622.	2.8	8
309	Porous frozen material approach to freeze-drying of instant coffee. Drying Technology, 2019, 37, 2126-2136.	1.7	8
310	The effect of Ir content on the stability of Ti/IrO ₂ 5 electrodes for O ₂ evolution. Canadian Journal of Chemical Engineering, 2019, 97, 743-754.	0.9	8
311	Understanding of the effect of nitrogen-doping level and micropore volume ratio on the capacitive performance of N,S-codoped hierarchically porous carbon. Electrochimica Acta, 2020, 354, 136639.	2.6	8
312	Highly Efficient Electrocatalytic Upgrade of <i>n</i> àâ€Valeraldehyde to Octane over Au SACs–NiMn ₂ O ₄ Spinel Synergetic Composites. Small, 2022, 18, .	5.2	8
313	Supercritical-hydrothermal accelerated solid state reaction route for synthesis of LiMn2O4 cathode material for high-power Li-ion batteries. Transactions of Nonferrous Metals Society of China, 2014, 24, 1414-1424.	1.7	7
314	Multiphysics Modeling for Microwave Freeze-Drying of Initially Porous Frozen Material Assisted by Wave-Absorptive Medium. Industrial & Engineering Chemistry Research, 2020, 59, 20903-20915.	1.8	7
315	A Model for Drying of Porous Materials: From Generality to Specific Applications. Drying Technology, 2011, 29, 1542-1555.	1.7	6
316	An Unprecedented Case: A Low Specific Surface Area Anatase/N-Doped Carbon Nanocomposite Derived from a New Single Source Precursor Affords Fast and Stable Lithium Storage. ACS Applied Materials & Lithium Storage. ACS Applied Materials & Lithium Storage.	4.0	6
317	High-efficient photooxidative degradation of dyes catalyzed by hetero-nuclear complex under light irradiation. Inorganic Chemistry Communication, 2010, 13, 1527-1529.	1.8	5
318	Techniques of Electrode Fabrication. , 2010, , 55-98.		5
319	Experimental Investigation of Combustion Kinetics of Wood Powder and Pellet. Journal of Combustion, 2018, 2018, 1-7.	0.5	5
320	Understanding the Roles of Sulfur Doping for Enhancing of Hydrophilicity and Electrochemical Performance of N,S-Codoped Hierarchically Porous Carbon. ACS Applied Energy Materials, 0, , .	2.5	5
321	Failure Analysis of Buried Polyethylene Pipe Subjected to Combined Loading of Non-uniform Settlement and Landslide Based on FEM. Journal of Failure Analysis and Prevention, 2018, 18, 1278-1285.	0.5	5
322	The enhancement of rate and cycle performance of LiMn2O4 at elevated temperatures by the synergistic roles of porous structure and dual-cation doping. Journal of Applied Electrochemistry, 2018, 48, 1083-1094.	1.5	5
323	Freezeâ€drying of ceftriaxone sodium solution frozen with prefabricated porosity. Canadian Journal of Chemical Engineering, 2019, 97, 709-716.	0.9	5
324	HP-MnCo2O4/C nanomaterials synthesized by Co Mn metal organic framework supported with the pyridine-3,5-dicarboxylate ligand for anode in lithium-ion batteries. Ionics, 2022, 28, 1667-1677.	1.2	5

#	Article	IF	Citations
325	Core–shell copper-manganese oxide nanoparticles synthesized from a copper-manganese metal–organic framework with pyromellitic acid as ligand for lithium-ion battery anode. Ionics, 2022, 28, 3719-3729.	1.2	5
326	Impingement and Through Air Drying of Paper. Drying Technology, 1995, 13, 479-480.	1.7	4
327	HFCVD of diamond and its application as electrode in aluminum electrolysis. Thin Solid Films, 2009, 517, 3559-3561.	0.8	4
328	Synthesis of sub-micrometer lithium iron phosphate particles using supercritical hydrothermal method for lithium ion batteries. Journal of Shanghai Jiaotong University (Science), 2012, 17, 517-522.	0.5	4
329	The effect of ruthenium content on the stability and activity of Ti/RuO2-Sb2O5-SnO2 for oxygen evolution. Journal of the Taiwan Institute of Chemical Engineers, 2021, 125, 186-194.	2.7	4
330	B ↕N Coordination Enables Efficient p-Doping in a Pyrazine-Based Polymer Donor Toward Enhanced Photovoltaic Performance. Macromolecules, 2021, 54, 10758-10766.	2.2	4
331	Iron-Based Magnetic Nanoparticles for Removal of Heavy Metals from Electroplating and Metal-Finishing Wastewater. , 2009, , 213-268.		3
332	Mechanical Properties Improvement of Waterborne Polyurethane Coating Films After Rewetting and Drying. Drying Technology, 2009, 27, 534-537.	1.7	3
333	Research and Application of Metallographical Image Edge Detection Based on Mathematical Morphology. , 2009, , .		3
334	Ultrasensitive Fe3+ ion detection based on pH-insensitive fluorescent graphene nanosensors in strong acid and neutral media. New Journal of Chemistry, 2021, 45, 5829-5836.	1.4	3
335	Encapsulating sulphur inside Magnéli phase <scp>Ti₄O₇</scp> nanotube array for high performance lithium sulphur battery cathode. Canadian Journal of Chemical Engineering, 2022, 100, 2417-2431.	0.9	3
336	QUANTIFICATION OF THROUGH DRYING RATE DATA. Drying Technology, 1999, 17, 1707-1723.	1.7	2
337	Improvement of ATO Electrode Stability by Doping with a Trace Amount of Ir. Electrochemical and Solid-State Letters, 2004, 7, J33.	2.2	2
338	Selective oxidation of cyclopentene catalyzed by Pd(CH3COO)2-NPMoV under oxygen atmosphere. Reaction Kinetics and Catalysis Letters, 2008, 94, 191-198.	0.6	2
339	Two-Dimensional Mathematical Modeling of Heat and Mass Transfer in Fluidized-Bed Drying of Porous Material. International Journal of Food Engineering, 2012, 8, .	0.7	2
340	Synthesis of spinel LiMn2O4 microspheres with durable high rate capability. Transactions of Nonferrous Metals Society of China, 2012, 22, 2541-2547.	1.7	2
341	Electrically and Electrochemically Assisted Nanofiltration: A Promising Approach for Fouling Mitigation. , 0, , .		2
342	The synergistic effects study between metal oxides and graphene on far-infrared emission performance. SN Applied Sciences, 2020, 2, 1 .	1.5	2

#	Article	IF	CITATIONS
343	Fabrication of Photoelectrode Materials. , 2010, , 473-513.		2
344	Environmental Photo(electro)catalysis: Fundamental Principles and Applied Catalysts., 2010,, 371-442.		2
345	N, O co-doped porous carbon with rich pseudocapacitive groups exhibiting superior energy density in an acidic 2.4ÂV Li2SO4 electrolyte. Chinese Chemical Letters, 2022, 33, 3883-3888.	4.8	2
346	Rapid synthesis of zeolites through g-C ₃ N ₄ -based photocatalysis. Green Chemistry, 2022, 24, 5792-5799.	4.6	2
347	Fundamental characteristics of combined impingement and through air drying of paper. Canadian Journal of Chemical Engineering, 1997, 75, 167-175.	0.9	1
348	Quantitative analysis of combined impingement and through air drying of paper. Canadian Journal of Chemical Engineering, 1997, 75, 176-189.	0.9	1
349	Dynamic Response Analysis of Large Arch-Roof Oil Tank Subjected to the Coupling Impact of Two-Source Blast Waves Based on Finite Element Method. Journal of Failure Analysis and Prevention, 2020, 20, 333-347.	0.5	1
350	Simple and Effective Way to Improve the Stability of Titanium Based Boron Doped Diamond Film Electrode. Materials Research Society Symposia Proceedings, 2006, 956, 1.	0.1	0
351	The 5th Asia-Pacific Drying Conference (ADC07) August 13–15, 2007, Hong Kong, China. Drying Technology, 2007, 25, 2059-2060.	1.7	0
352	ISSUES IN FREEZE DRYING/LYOPHILIZATION OF AQUEOUS SOLUTIONS., 2007,,.		0
353	Experiments on Enhanced Heat Transfer of Self-Exciting Mode Oscillating-Flow Heat Pipe with Non-Uniform Structure. International Journal of Food Engineering, 2010, 6, .	0.7	0
354	EXPERIMENTAL STUDY ON MICROWAVE FREEZE DRYING OF SILICA GEL WITH DIELECTRIC MATERIAL ENHANCEMENT., 2007, , .		0
355	EXPERIMENTAL STUDY ON THE HEAT TRANSFER ENHANCEMENT OF OSCILLATING-FLOW HEAT PIPE BY ACOUSTIC CAVITATION., 2007, , .		O