
Brian J Willett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1874609/publications.pdf Version: 2024-02-01

RDIAN I WILLETT

#	Article	IF	CITATIONS
1	Impaired neutralisation of SARS-CoV-2 delta variant in vaccinated patients with B cell chronic lymphocytic leukaemia. Journal of Hematology and Oncology, 2022, 15, 3.	6.9	28
2	Evaluation of the effect of maternally derived antibody on response to MMR vaccine in Thai infants. Vaccine, 2022, 40, 1439-1447.	1.7	2
3	Children develop robust and sustained cross-reactive spike-specific immune responses to SARS-CoV-2 infection. Nature Immunology, 2022, 23, 40-49.	7.0	145
4	Exploration of immunological responses underpinning severe fever with thrombocytopenia syndrome virus infection reveals IL-6 as a therapeutic target in an immunocompromised mouse model. , 2022, 1, pgac024.		5
5	mRNA or ChAd0x1 COVID-19 Vaccination of Adolescents Induces Robust Antibody and Cellular Responses With Continued Recognition of Omicron Following mRNA-1273. Frontiers in Immunology, 2022, 13, .	2.2	3
6	SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nature Microbiology, 2022, 7, 1161-1179.	5.9	352
7	Predicting the presence and titre of rabies virusâ€neutralizing antibodies from lowâ€volume serum samples in lowâ€containment facilities. Transboundary and Emerging Diseases, 2021, 68, 1564-1576.	1.3	7
8	Measuring the Humoral Immune Response in Cats Exposed to Feline Leukaemia Virus. Viruses, 2021, 13, 428.	1.5	8
9	Application of error-prone PCR to functionally probe the morbillivirus Haemagglutinin protein. Journal of General Virology, 2021, 102, .	1.3	2
10	Molecular epidemiology of peste des petits ruminants virus emergence in critically endangered Mongolian saiga antelope and other wild ungulates. Virus Evolution, 2021, 7, veab062.	2.2	13
11	In vitro selection of Remdesivir resistance suggests evolutionary predictability of SARS-CoV-2. PLoS Pathogens, 2021, 17, e1009929.	2.1	108
12	Severe Acute Respiratory Syndrome Coronavirus 2 Serosurveillance in a Patient Population Reveals Differences in Virus Exposure and Antibody-Mediated Immunity According to Host Demography and Healthcare Setting. Journal of Infectious Diseases, 2021, 223, 971-980.	1.9	20
13	Reduced neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination. PLoS Pathogens, 2021, 17, e1010022.	2.1	139
14	Distemper, extinction, and vaccination of the Amur tiger. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31954-31962.	3.3	33
15	Peste des petits ruminants Virus Transmission Scaling and Husbandry Practices That Contribute to Increased Transmission Risk: An Investigation among Sheep, Goats, and Cattle in Northern Tanzania. Viruses, 2020, 12, 930.	1.5	10
16	Send cat and dog samples to test for SARS oVâ€2. Veterinary Record, 2020, 186, 571-571.	0.2	3
17	Identifying Age Cohorts Responsible for Peste Des Petits Ruminants Virus Transmission among Sheep, Goats, and Cattle in Northern Tanzania. Viruses, 2020, 12, 186.	1.5	8
18	Structure-Guided Identification of a Nonhuman Morbillivirus with Zoonotic Potential. Journal of Virology, 2018, 92, .	1.5	23

BRIAN J WILLETT

#	Article	IF	CITATIONS
19	The Comparative Value of Feline Virology Research: Can Findings from the Feline Lentiviral Vaccine Be Translated to Humans?. Veterinary Sciences, 2017, 4, 7.	0.6	5
20	Future research to underpin successful peste des petits ruminants virus (PPRV) eradication. Journal of General Virology, 2017, 98, 2635-2644.	1.3	53
21	Enhanced immunosurveillance for animal morbilliviruses using vesicular stomatitis virus (VSV) pseudotypes. Vaccine, 2016, 34, 5736-5743.	1.7	14
22	Efficient generation of vesicular stomatitis virus (VSV)-pseudotypes bearing morbilliviral glycoproteins and their use in quantifying virus neutralising antibodies. Vaccine, 2016, 34, 814-822.	1.7	25
23	Neutralising antibody response in domestic cats immunised with a commercial feline immunodeficiency virus (FIV) vaccine. Vaccine, 2015, 33, 977-984.	1.7	10
24	Comparing the efficacy of FeLV vaccines. Vaccine, 2015, 33, 2737-2738.	1.7	2
25	Emergence of CD134 cysteine-rich domain 2 (CRD2)-independent strains of feline immunodeficiency virus (FIV) is associated with disease progression in naturally infected cats. Retrovirology, 2014, 11, 95.	0.9	8
26	Feline leukaemia virus: Half a century since its discovery. Veterinary Journal, 2013, 195, 16-23.	0.6	51
27	The virus–receptor interaction in the replication of feline immunodeficiency virus (FIV). Current Opinion in Virology, 2013, 3, 670-675.	2.6	17
28	Selective Expansion of Viral Variants following Experimental Transmission of a Reconstituted Feline Immunodeficiency Virus Quasispecies. PLoS ONE, 2013, 8, e54871.	1.1	9
29	Restriction of the felid lentiviruses by a synthetic feline TRIM5–CypA fusion. Veterinary Immunology and Immunopathology, 2011, 143, 235-242.	0.5	1
30	Feline Immunodeficiency Virus (FIV) Neutralization: A Review. Viruses, 2011, 3, 1870-1890.	1.5	20
31	Modulation of the virus-receptor interaction by mutations in the V5 loop of feline immunodeficiency virus (FIV) following in vivoescape from neutralising antibody. Retrovirology, 2010, 7, 38.	0.9	12
32	Feline immunodeficiency virus env gene evolution in experimentally infected cats. Veterinary Immunology and Immunopathology, 2010, 134, 96-106.	0.5	18
33	Enforced covalent trimerisation of soluble feline CD134 (OX40)-ligand generates a functional antagonist of feline immunodeficiency virus. Molecular Immunology, 2009, 46, 1020-1030.	1.0	5
34	A single site for N-linked glycosylation in the envelope glycoprotein of feline immunodeficiency virus modulates the virus-receptor interaction. Retrovirology, 2008, 5, 77.	0.9	19
35	Chemokine receptors and co-stimulatory molecules: Unravelling feline immunodeficiency virus infection. Veterinary Immunology and Immunopathology, 2008, 123, 56-64.	0.5	26
36	Probing the Interaction between Feline Immunodeficiency Virus and CD134 by Using the Novel Monoclonal Antibody 7D6 and the CD134 (O×40) Ligand. Journal of Virology, 2007, 81, 9665-9679.	1.5	21

BRIAN J WILLETT

#	Article	IF	CITATIONS
37	Differential Utilization of CD134 as a Functional Receptor by Diverse Strains of Feline Immunodeficiency Virus. Journal of Virology, 2006, 80, 3386-3394.	1.5	45
38	Mapping the Domains of CD134 as a Functional Receptor for Feline Immunodeficiency Virus. Journal of Virology, 2006, 80, 7744-7747.	1.5	27
39	Use of CD134 As a Primary Receptor by the Feline Immunodeficiency Virus. Science, 2004, 303, 1192-1195.	6.0	170
40	Expression of CXCR4 on Feline Peripheral Blood Mononuclear Cells: Effect of Feline Immunodeficiency Virus Infection. Journal of Virology, 2003, 77, 709-712.	1.5	26
41	Upregulation of Surface Feline CXCR4 Expression following Ectopic Expression of CCR5: Implications for Studies of the Cell Tropism of Feline Immunodeficiency Virus. Journal of Virology, 2002, 76, 9242-9252.	1.5	21
42	The role of the chemokine receptor CXCR4 in infection with feline immunodeficiency virus. Molecular Membrane Biology, 1999, 16, 67-72.	2.0	22
43	DNA Vaccination Affords Significant Protection against Feline Immunodeficiency Virus Infection without Inducing Detectable Antiviral Antibodies. Journal of Virology, 1998, 72, 8460-8460.	1.5	2
44	The Role of In Vitro-Induced Lymphocyte Apoptosis in Feline Immunodeficiency Virus Infection: Correlation with Different Markers of Disease Progression. Journal of Virology, 1998, 72, 9025-9033.	1.5	22
45	Common mechanism of infection by lentiviruses. Nature, 1997, 385, 587-587.	13.7	97
46	The immortalisation of rat hepatocytes by transfection with SV40 sequences. , 1997, 23, 161-170.		10
47	FIV infection of the domestic cat: an animal model for AIDS. Trends in Immunology, 1997, 18, 182-189.	7.5	179