Enrico Vezzetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1873815/publications.pdf

Version: 2024-02-01

92 2,035
papers citations h-

26 39
h-index g-index

302012

93 93 all docs docs citations

93 times ranked 1592 citing authors

#	Article	IF	CITATIONS
1	Model-based definition design in the product lifecycle management scenario. International Journal of Advanced Manufacturing Technology, 2011, 52, 1-14.	1.5	126
2	Kano qualitative vs quantitative approaches: An assessment framework for products attributes analysis. Computers in Industry, 2017, 86, 15-25.	5.7	90
3	Virtual interactive eâ€learning application: An evaluation of the student satisfaction. Computer Applications in Engineering Education, 2015, 23, 72-91.	2.2	88
4	Key performance indicators for PLM benefits evaluation: The Alcatel Alenia Space case study. Computers in Industry, 2008, 59, 833-841.	5.7	75
5	Novel descriptors for geometrical 3D face analysis. Multimedia Tools and Applications, 2017, 76, 13805-13834.	2.6	57
6	Implementing a new approach for the design of an eâ€learning platform in engineering education. Computer Applications in Engineering Education, 2014, 22, 708-727.	2.2	55
7	3D face recognition: An automatic strategy based on geometrical descriptors and landmarks. Robotics and Autonomous Systems, 2014, 62, 1768-1776.	3.0	55
8	3D human face description: landmarks measures and geometrical features. Image and Vision Computing, 2012, 30, 698-712.	2.7	50
9	3D geometry-based automatic landmark localization in presence of facial occlusions. Multimedia Tools and Applications, 2018, 77, 14177-14205.	2.6	49
10	3D Approaches and Challenges in Facial Expression Recognition Algorithmsâ€"A Literature Review. Applied Sciences (Switzerland), 2019, 9, 3904.	1.3	47
11	How to design a virtual reality experience that impacts the consumer engagement: the case of the virtual supermarket. International Journal on Interactive Design and Manufacturing, 2019, 13, 243-262.	1.3	46
12	Interactive virtual technologies in engineering education: Why not $360 \hat{A}^{\circ}$ videos?. International Journal on Interactive Design and Manufacturing, $2019, 13, 729-742$.	1.3	45
13	Hierarchical fracture classification of proximal femur X-Ray images using a multistage Deep Learning approach. European Journal of Radiology, 2020, 133, 109373.	1.2	45
14	A product lifecycle management methodology for supporting knowledge reuse in the consumer packaged goods domain. CAD Computer Aided Design, 2011, 43, 1902-1911.	1.4	44
15	Occlusion detection and restoration techniques for 3D face recognition: a literature review. Machine Vision and Applications, 2018, 29, 789-813.	1.7	44
16	A benchmarking framework for product lifecycle management (PLM) maturity models. International Journal of Advanced Manufacturing Technology, 2014, 71, 899-918.	1.5	43
17	3D Landmarking in Multiexpression Face Analysis: A Preliminary Study on Eyebrows and Mouth. Aesthetic Plastic Surgery, 2014, 38, 796-811.	0.5	38
18	A design methodology for affective Virtual Reality. International Journal of Human Computer Studies, 2022, 162, 102791.	3.7	38

#	Article	IF	CITATIONS
19	Real-time deep learning semantic segmentation during intra-operative surgery for 3D augmented reality assistance. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 1435-1445.	1.7	37
20	Geometrical descriptors for human face morphological analysis and recognition. Robotics and Autonomous Systems, 2012, 60, 928-939.	3.0	35
21	Reconstruction of facial morphology from laser scanned data. Part I: reliability of the technique. Dentomaxillofacial Radiology, 2006, 35, 158-164.	1.3	32
22	X-Ray Bone Fracture Classification Using Deep Learning: A Baseline for Designing a Reliable Approach. Applied Sciences (Switzerland), 2020, 10, 1507.	1.3	32
23	Geometry-based 3D face morphology analysis: soft-tissue landmark formalization. Multimedia Tools and Applications, 2014, 68, 895-929.	2.6	30
24	3D Soft-Tissue Prediction Methodologies for Orthognathic Surgeryâ€"A Literature Review. Applied Sciences (Switzerland), 2019, 9, 4550.	1.3	30
25	Vision Transformer for femur fracture classification. Injury, 2022, 53, 2625-2634.	0.7	30
26	3D human face soft tissues landmarking method: An advanced approach. Computers in Industry, 2013, 64, 1326-1354.	5.7	29
27	Analysis of RGB-D camera technologies for supporting different facial usage scenarios. Multimedia Tools and Applications, 2020, 79, 29375-29398.	2.6	29
28	Product lifecycle data sharing and visualisation: Web-based approaches. International Journal of Advanced Manufacturing Technology, 2009, 41, 613-630.	1.5	25
29	Soft Tissue Diagnosis in Maxillofacial Surgery: A Preliminary Study on Three-Dimensional Face Geometrical Features-Based Analysis. Aesthetic Plastic Surgery, 2010, 34, 200-211.	0.5	25
30	Cleft lip pathology diagnosis and foetal landmark extraction via 3D geometrical analysis. International Journal on Interactive Design and Manufacturing, 2017, 11, 1-18.	1.3	25
31	Supporting product development in the textile industry through the use of a product lifecycle management approach: a preliminary set of guidelines. International Journal of Advanced Manufacturing Technology, 2015, 79, 1493-1504.	1.5	23
32	An integrated approach to support the Requirement Management (RM) tool customization for a collaborative scenario. International Journal on Interactive Design and Manufacturing, 2017, 11, 191-204.	1.3	23
33	Guidelines to design engineering education in the twenty-first century for supporting innovative product development. European Journal of Engineering Education, 2017, 42, 1344-1364.	1.5	23
34	Computer-aided morphological analysis for maxillo-facial diagnostic: a preliminary study. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2010, 63, 218-226.	0.5	22
35	Development of an innovative low-cost MARG sensors alignment and distortion compensation methodology for 3D scanning applications. Robotics and Autonomous Systems, 2013, 61, 1710-1716.	3.0	22
36	Reverse engineering of free-form surfaces: A methodology for threshold definition in selective sampling. International Journal of Machine Tools and Manufacture, 2006, 46, 1079-1086.	6.2	21

3

#	Article	IF	CITATIONS
37	A methodology for supporting requirement management tools (RMt) design in the PLM scenario: An user-based strategy. Computers in Industry, 2014, 65, 1065-1075.	5.7	21
38	Perspective Morphometric Criteria for Facial Beauty and Proportion Assessment. Applied Sciences (Switzerland), 2020, 10, 8.	1.3	20
39	Compliant assembly tolerance analysis: guidelines to formalize the resistance spot welding plasticity effects. International Journal of Advanced Manufacturing Technology, 2012, 61, 503-518.	1.5	19
40	Computer aided inspection: design of customer-oriented benchmark for noncontact 3D scanner evaluation. International Journal of Advanced Manufacturing Technology, 2009, 41, 1140-1151.	1.5	18
41	Design and implementation of 3D Web-based interactive medical devices for educational purposes. International Journal on Interactive Design and Manufacturing, 2017, 11, 31-44.	1.3	18
42	Engagement Evaluation in a Virtual Learning Environment via Facial Expression Recognition and Self-Reports: A Preliminary Approach. Applied Sciences (Switzerland), 2020, 10, 314.	1.3	18
43	New product development (NPD) of †family business' dealing in the luxury industry: evaluating maturity stage for implementing a PLM solution. International Journal of Fashion Design, Technology and Education, 2017, 10, 219-229.	0.9	17
44	Optimal marker set assessment for motion capture of 3D mimic facial movements. Journal of Biomechanics, 2019, 93, 86-93.	0.9	17
45	Numerical simulation of deposition process for a new 3DP printhead design. Journal of Materials Processing Technology, 2005, 161, 509-515.	3.1	16
46	3D Facial Action Units and Expression Recognition using a Crisp Logic. Computer-Aided Design and Applications, 2018, 16, 256-268.	0.4	16
47	A pose-independent method for 3D face landmark formalization. Computer Methods and Programs in Biomedicine, 2012, 108, 1078-1096.	2.6	15
48	3D geometry-based face recognition in presence of eye and mouth occlusions. International Journal on Interactive Design and Manufacturing, 2019, 13, 1617-1635.	1.3	15
49	A deep learning framework for realâ€time 3D model registration in robotâ€assisted laparoscopic surgery. International Journal of Medical Robotics and Computer Assisted Surgery, 2022, 18, e2387.	1.2	15
50	Assessment of Cognitive Student Engagement Using Heart Rate Data in Distance Learning during COVID-19. Education Sciences, 2021, 11, 540.	1.4	14
51	New 3d segmentation approach for reverse engineering selective sampling acquisition. International Journal of Advanced Manufacturing Technology, 2008, 35, 900-907.	1.5	13
52	Adaptive sampling plan design methodology for reverse engineering acquisition. International Journal of Advanced Manufacturing Technology, 2009, 42, 780-792.	1.5	13
53	Augmented Reality: Mapping Methods and Tools for Enhancing the Human Role in Healthcare HMI. Applied Sciences (Switzerland), 2022, 12, 4295.	1.3	13
54	3D Facial Expression Recognition for Defining Users' Inner Requirements—An Emotional Design Case Study. Applied Sciences (Switzerland), 2019, 9, 2218.	1.3	12

#	Article	IF	Citations
55	3D augmentation of the surgical video stream: Toward a modular approach. Computer Methods and Programs in Biomedicine, 2020, 191, 105505.	2.6	12
56	<scp>Intraoperative</scp> surgery room management: A deep learning perspective. International Journal of Medical Robotics and Computer Assisted Surgery, 2020, 16, 1-12.	1.2	12
57	Design Thinking as a Framework for the Design of a Sustainable Waste Sterilization System: The Case of Piedmont Region, Italy. Electronics (Switzerland), 2021, 10, 2665.	1.8	12
58	EXPLOITING 3D ULTRASOUND FOR FETAL DIAGNOSTIC PURPOSE THROUGH FACIAL LANDMARKING. Image Analysis and Stereology, 2014, 33, 167.	0.4	11
59	A Morphological Methodology for Three-dimensional Human Face Soft-tissue Landmarks Extraction: A Preliminary Study. Aesthetic Plastic Surgery, 2011, 35, 289-302.	0.5	10
60	Design of webâ€based interactive 3D concept maps: A preliminary study for an engineering drawing course. Computer Applications in Engineering Education, 2015, 23, 403-411.	2.2	10
61	How to practise Open Innovation today: what, where, how and why. Creative Industries Journal, 2017, 10, 258-291.	1.1	10
62	Development of an affective database made of interactive virtual environments. Scientific Reports, 2021, 11, 24108.	1.6	10
63	Reverse engineering: a selective sampling acquisition approach. International Journal of Advanced Manufacturing Technology, 2007, 33, 521-529.	1.5	9
64	A knowledge reusing methodology in the product's lifecycle scenario: a semantic approach. International Journal of Manufacturing Technology and Management, 2012, 26, 149.	0.1	9
65	Study and development of a low cost "Optlnertial―3D scanner. Precision Engineering, 2014, 38, 261-269.	1.8	9
66	Application of geometry to RGB images for facial landmark localisation - a preliminary approach. International Journal of Biometrics, 2016, 8, 216.	0.3	9
67	Validation of a TAM Extension in Agriculture: Exploring the Determinants of Acceptance of an e-Learning Platform. Applied Sciences (Switzerland), 2021, 11, 4672.	1.3	9
68	Resistance spot welding process simulation for variational analysis on compliant assemblies. Journal of Manufacturing Systems, 2015, 37, 44-71.	7.6	8
69	Automatic 3D foetal face model extraction from ultrasonography through histogram processing. Journal of Medical Ultrasound, 2016, 24, 142-149.	0.2	8
70	Malar augmentation with zygomatic osteotomy in orthognatic surgery: Bone and soft tissue changes threedimensional evaluation. Journal of Cranio-Maxillo-Facial Surgery, 2021, 49, 223-230.	0.7	7
71	A methodology for supporting the design of a learning outcomes-based formative assessment: the engineering drawing case study. European Journal of Engineering Education, 2020, 45, 305-327.	1.5	5
72	Non-linear-Optimization Using SQP for 3D Deformable Prostate Model Pose Estimation in Minimally Invasive Surgery. Advances in Intelligent Systems and Computing, 2020, , 477-496.	0.5	5

#	Article	IF	CITATIONS
73	Understanding Abstraction in Deep CNN: An Application on Facial Emotion Recognition. Smart Innovation, Systems and Technologies, 2021, , 281-290.	0.5	5
74	Evaluation of HMDs by QFD for Augmented Reality Applications in the Maxillofacial Surgery Domain. Applied Sciences (Switzerland), 2021, 11, 11053.	1.3	5
75	Pitch function comparison methodology for supporting a smart 3D scanner selection. Precision Engineering, 2010, 34, 327-337.	1.8	4
76	Three-dimensional face analysis via new geometrical descriptors. Lecture Notes in Mechanical Engineering, 2017, , 747-756.	0.3	4
77	A new method for protein characterization and classification using geometrical features for <scp>3D</scp> face analysis: An example of tubulin structures. Proteins: Structure, Function and Bioinformatics, 2021, 89, 53-67.	1.5	4
78	Three-Dimensional Evaluation of Soft Tissue Malar Modifications after Zygomatic Valgization Osteotomy via Geometrical Descriptors. Journal of Personalized Medicine, 2021, 11, 205.	1.1	4
79	Questionnaires or Inner Feelings: Who Measures the Engagement Better?. Applied Sciences (Switzerland), 2020, 10, 609.	1.3	4
80	Can ADAS Distract Driver's Attention? An RGB-D Camera and Deep Learning-Based Analysis. Applied Sciences (Switzerland), 2021, 11, 11587.	1.3	4
81	An integrated strategy for variational analysis of compliant plastic assemblies on shell elements. International Journal of Advanced Manufacturing Technology, 2013, 69, 875-890.	1.5	3
82	Facial Landmarks for Forensic Skull-Based 3D Face Reconstruction: A Literature Review. Lecture Notes in Computer Science, 2016, , 172-180.	1.0	3
83	Optimal pitch map generation for scanning pitch design in selective sampling. Robotics and Autonomous Systems, 2009, 57, 578-590.	3.0	2
84	Study and development of morphological analysis guidelines for point cloud management: The "decisional cube― CAD Computer Aided Design, 2011, 43, 1074-1088.	1.4	2
85	Building an Ecologically Valid Facial Expression Database – Behind the Scenes. Lecture Notes in Computer Science, 2021, , 599-616.	1.0	2
86	Dynamic evaluation of THA components by Prosthesis Impingement Software (PIS). Acta Biomedica, 2021, 92, e2021295.	0.2	2
87	Spin casting characterization: An experimental approach for the definition of runners design guidelines. Journal of Materials Processing Technology, 2008, 196, 33-41.	3.1	1
88	Guidelines for the design of tyre sensor housings. International Journal of Advanced Manufacturing Technology, 2014, 75, 573-597.	1.5	1
89	Enhancing Spatial Navigation in Robot-Assisted Surgery: An Application. Lecture Notes in Mechanical Engineering, 2020, , 95-105.	0.3	1
90	Big Data Analysis Techniques for Supporting Product Lifecycle Management in the Fashion Industries. Lecture Notes in Electrical Engineering, 2019, , 25-34.	0.3	1

#	Article	IF	CITATIONS
91	Emotional Design and Virtual Reality in Product Lifecycle Management (PLM). Smart Innovation, Systems and Technologies, 2019, , 177-187.	0.5	o
92	The Kano Model in the Development of Customer Oriented Products. Studies in Systems, Decision and Control, 2020, , 187-214.	0.8	0