
Yoshihiro Usuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1873414/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative Complete Genome Sequence Analysis of the Amino Acid Replacements Responsible for the Thermostability of Corynebacterium efficiens. Genome Research, 2003, 13, 1572-1579.	5.5	194
2	Altered Metabolic Flux due to Deletion of odhA causes l -Glutamate Overproduction in Corynebacterium glutamicum. Applied and Environmental Microbiology, 2007, 73, 1308-1319.	3.1	129
3	Determination of metabolic flux changes during fed-batch cultivation from measurements of intracellular amino acids by LC-MS/MS. Journal of Biotechnology, 2007, 128, 93-111.	3.8	79
4	Effects of Deregulation of Methionine Biosynthesis on Methionine Excretion in <i>Escherichia coli</i> . Applied and Environmental Microbiology, 2005, 71, 3228-3234.	3.1	52
5	Dynamic modeling of Escherichia coli metabolic and regulatory systems for amino-acid production. Journal of Biotechnology, 2010, 147, 17-30.	3.8	52
6	Metabolic flux analysis in biotechnology processes. Biotechnology Letters, 2008, 30, 791-799.	2.2	51
7	Computerâ€eided rational design of the phosphotransferase system for enhanced glucose uptake in <i>Escherichia coli</i> . Molecular Systems Biology, 2008, 4, 160.	7.2	40
8	Identification of succinate exporter in Corynebacterium glutamicum and its physiological roles under anaerobic conditions. Journal of Biotechnology, 2011, 154, 25-34.	3.8	40
9	Theoretical analysis of amino acid-producing Escherichia coli using a stoichiometric model and multivariate linear regression. Journal of Bioscience and Bioengineering, 2006, 102, 34-40.	2.2	29
10	Reduction of hydrogen peroxide stress derived from fatty acid beta-oxidation improves fatty acid utilization in Escherichia coli. Applied Microbiology and Biotechnology, 2014, 98, 629-639.	3.6	26
11	Stereospecific linalool production utilizing two-phase cultivation system in Pantoea ananatis. Journal of Biotechnology, 2020, 324, 21-27.	3.8	20
12	Identification of enzymes responsible for extracellular alginate depolymerization and alginate metabolism in Vibrio algivorus. Applied Microbiology and Biotechnology, 2017, 101, 1581-1592.	3.6	18
13	Fermentative production of enantiopure (S)-linalool using a metabolically engineered Pantoea ananatis. Microbial Cell Factories, 2021, 20, 54.	4.0	18
14	Analysis of l-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli. BMC Systems Biology, 2013, 7, 92.	3.0	17
15	Effects of Eliminating Pyruvate Node Pathways and of Coexpression of Heterogeneous Carboxylation Enzymes on Succinate Production by Enterobacter aerogenes. Applied and Environmental Microbiology, 2015, 81, 929-937.	3.1	16
16	Production of glutamate and stereospecific flavors, (S)-linalool and (+)-valencene, by Synechocystis sp. PCC6803. Journal of Bioscience and Bioengineering, 2020, 130, 464-470.	2.2	15
17	Complete Deficiency of 5′-Nucleotidase Activity in <i>Escherichia coli </i> Leads to Loss of Growth on Purine Nucleotides but Not of Their Excretion. Journal of Molecular Microbiology and Biotechnology, 2007, 13, 96-104.	1.0	14
18	Study of the role of anaerobic metabolism in succinate production by Enterobacter aerogenes. Applied Microbiology and Biotechnology, 2014, 98, 7803-7813.	3.6	12

Yoshihiro Usuda

#	Article	IF	CITATIONS
19	Impact of an energy-conserving strategy on succinate production under weak acidic and anaerobic conditions in Enterobacter aerogenes. Microbial Cell Factories, 2015, 14, 80.	4.0	9
20	Characterization of the cell surface protein gene of Corynebacterium ammoniagenes. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2001, 1522, 138-141.	2.4	7
21	Toward Sustainable Amino Acid Production. Advances in Biochemical Engineering/Biotechnology, 2016, 159, 289-304.	1.1	6
22	Microbial Production Potential of Pantoea ananatis: From Amino Acids to Secondary Metabolites. Microorganisms, 2022, 10, 1133.	3.6	4