Hisao Yamamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1873098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis. American Journal of Physiology - Cell Physiology, 2017, 312, C749-C764.	4.6	190
2	TRPM8 activation suppresses cellular viability in human melanoma. American Journal of Physiology - Cell Physiology, 2008, 295, C296-C301.	4.6	117
3	Ca2+images and K+current during depolarization in smooth muscle cells of the guinea-pig vas deferens and urinary bladder. Journal of Physiology, 1998, 510, 705-719.	2.9	116
4	Enhanced Ca ²⁺ -Sensing Receptor Function in Idiopathic Pulmonary Arterial Hypertension. Circulation Research, 2012, 111, 469-481.	4.5	105
5	Local Ca ²⁺ transients and distribution of BK channels and ryanodine receptors in smooth muscle cells of guineaâ€pig vas deferens and urinary bladder. Journal of Physiology, 2001, 534, 313-326.	2.9	97
6	Notch Activation of Ca ²⁺ Signaling in the Development of Hypoxic Pulmonary Vasoconstriction and Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 355-367.	2.9	86
7	Pathogenic role of calcium-sensing receptors in the development and progression of pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L846-L859.	2.9	69
8	Protons Activate the δ-Subunit of the Epithelial Na+ Channel in Humans. Journal of Biological Chemistry, 2004, 279, 12529-12534.	3.4	66
9	TRIC-A Channels in Vascular Smooth Muscle Contribute to Blood Pressure Maintenance. Cell Metabolism, 2011, 14, 231-241.	16.2	64
10	Caveolin-1 Facilitates the Direct Coupling between Large Conductance Ca2+-activated K+ (BKCa) and Cav1.2 Ca2+ Channels and Their Clustering to Regulate Membrane Excitability in Vascular Myocytes. Journal of Biological Chemistry, 2013, 288, 36750-36761.	3.4	55
11	Accelerated Ca ²⁺ entry by membrane hyperpolarization due to Ca ²⁺ -activated K ⁺ channel activation in response to histamine in chondrocytes. American Journal of Physiology - Cell Physiology, 2010, 298, C786-C797.	4.6	47
12	Contribution of K _{ir} 2 potassium channels to ATP-induced cell death in brain capillary endothelial cells and reconstructed HEK293 cell model. American Journal of Physiology - Cell Physiology, 2011, 300, C75-C86.	4.6	46
13	Capsazepine Is a Novel Activator of the δSubunit of the Human Epithelial Na+ Channel. Journal of Biological Chemistry, 2004, 279, 44483-44489.	3.4	45
14	Dihydropyridine Ca ²⁺ Channel Blockers Increase Cytosolic [Ca ²⁺] by Activating Ca ²⁺ -sensing Receptors in Pulmonary Arterial Smooth Muscle Cells. Circulation Research, 2013, 112, 640-650.	4.5	42
15	Orai1–Orai2 complex is involved in store-operated calcium entry in chondrocyte cell lines. Cell Calcium, 2015, 57, 337-347.	2.4	41
16	Two-step Ca2+ intracellular release underlies excitation-contraction coupling in mouse urinary bladder myocytes. American Journal of Physiology - Cell Physiology, 2006, 290, C388-C403.	4.6	40
17	Molecular assembly and dynamics of fluorescent protein-tagged single K _{Ca} 1.1 channel in expression system and vascular smooth muscle cells. American Journal of Physiology - Cell Physiology, 2012, 302, C1257-C1268.	4.6	37
18	Upregulation of K _{Ca} 3.1 K ⁺ channel in mesenteric lymph node CD4 ⁺ T lymphocytes from a mouse model of dextran sodium sulfate-induced inflammatory bowel disease. American Journal of Physiology - Renal Physiology, 2014, 306, G873-G885.	3.4	32

#	Article	IF	CITATIONS
19	BK channel activation by NS-1619 is partially mediated by intracellular Ca2+ release in smooth muscle cells of porcine coronary artery. British Journal of Pharmacology, 2001, 132, 828-834.	5.4	31
20	The CIC-7 Chloride Channel Is Downregulated by Hypoosmotic Stress in Human Chondrocytes. Molecular Pharmacology, 2015, 88, 113-120.	2.3	29
21	A junctophilin-caveolin interaction enables efficient coupling between ryanodine receptors and BKCa channels in the Ca2+ microdomain of vascular smooth muscle. Journal of Biological Chemistry, 2019, 294, 13093-13105.	3.4	29
22	Contribution of Chloride Channel Conductance to the Regulation of Resting Membrane Potential in Chondrocytes. Journal of Pharmacological Sciences, 2010, 113, 94-99.	2.5	27
23	Regulation of store-operated Ca2+ entry activity by cell cycle dependent up-regulation of Orai2 in brain capillary endothelial cells. Biochemical and Biophysical Research Communications, 2015, 459, 457-462.	2.1	26
24	TMEM16A and TMEM16B channel proteins generate Ca2+-activated Clâ^' current and regulate melatonin secretion in rat pineal glands. Journal of Biological Chemistry, 2018, 293, 995-1006.	3.4	26
25	The multiple expression of Ca2+-activated Clâ^' channels via homo- and hetero-dimer formation of TMEM16A splicing variants in murine portal vein. Biochemical and Biophysical Research Communications, 2014, 443, 518-523.	2.1	25
26	MicroRNA-mediated downregulation of K ⁺ channels in pulmonary arterial hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L10-L26.	2.9	25
27	Expression analysis of the epithelial Na+ channel δ subunit in human melanoma G-361 cells. Biochemical and Biophysical Research Communications, 2008, 366, 489-492.	2.1	23
28	A New Splice Variant of Large Conductance Ca2+-activated K+ (BK) Channel α Subunit Alters Human Chondrocyte Function. Journal of Biological Chemistry, 2016, 291, 24247-24260.	3.4	22
29	New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy. Journal of Pharmacological Sciences, 2015, 128, 1-7.	2.5	20
30	Comparative study of the molecular and functional expression of L-type Ca2+ channels and large-conductance, Ca2+-activated K+ channels in rabbit aorta and vas deferens smooth muscle. Pflugers Archiv European Journal of Physiology, 2001, 441, 611-620.	2.8	19
31	Icilin Activates the Î-Subunit of the Human Epithelial Na ⁺ Channel. Molecular Pharmacology, 2005, 68, 1142-1147.	2.3	19
32	A novel spliced variant of the epithelial Na+ channel δ-subunit in the human brain. Biochemical and Biophysical Research Communications, 2006, 349, 317-321.	2.1	19
33	Epithelial Na+ channel δ subunit mediates acid-induced ATP release in the human skin. Biochemical and Biophysical Research Communications, 2008, 373, 155-158.	2.1	19
34	Hypoxic stress up-regulates Kir2.1 expression and facilitates cell proliferation in brain capillary endothelial cells. Biochemical and Biophysical Research Communications, 2016, 476, 386-392.	2.1	19
35	Tadalafil induces antiproliferation, apoptosis, and phosphodiesterase type 5 downregulation in idiopathic pulmonary arterial hypertension in vitro. European Journal of Pharmacology, 2017, 810, 44-50.	3.5	19
36	Evans Blue Is a Specific Antagonist of the Human Epithelial Na+ Channel δ-Subunit. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 965-969.	2.5	18

#	Article	IF	CITATIONS
37	Overactive bladder mediated by accelerated Ca ²⁺ influx mode of Na ⁺ /Ca ²⁺ exchanger in smooth muscle. American Journal of Physiology - Cell Physiology, 2013, 305, C299-C308.	4.6	18
38	Up-regulation of Kir2.1 by ER stress facilitates cell death of brain capillary endothelial cells. Biochemical and Biophysical Research Communications, 2011, 411, 293-298.	2.1	17
39	Physiological and Pathological Functions of Cl ^{â^'} Channels in Chondrocytes. Biological and Pharmaceutical Bulletin, 2018, 41, 1145-1151.	1.4	17
40	Epithelial Na+ channel δ subunit is an acid sensor in the human oesophagus. European Journal of Pharmacology, 2008, 600, 32-36.	3.5	16
41	K+ and Ca2+ Channels Regulate Ca2+ Signaling in Chondrocytes: An Illustrated Review. Cells, 2020, 9, 1577.	4.1	16
42	Molecular mechanisms underlying pimaric acid-induced modulation of voltage-gated K+ channels. Journal of Pharmacological Sciences, 2017, 133, 223-231.	2.5	15
43	Heterodimerization of two pore domain K+ channel TASK1 and TALK2 in living heterologous expression systems. PLoS ONE, 2017, 12, e0186252.	2.5	15
44	TMEM16A Ca ²⁺ -Activated Cl ⁻ Channel Regulates the Proliferation and Migration of Brain Capillary Endothelial Cells. Molecular Pharmacology, 2020, 98, 61-71.	2.3	15
45	A molecular complex of Ca _v 1.2/CaMKK2/CaMK1a in caveolae is responsible for vascular remodeling via excitation–transcription coupling. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117435119.	7.1	15
46	Methyl-β-cyclodextrin Prevents Ca2+-Induced Ca2+ Release in Smooth Muscle Cells of Mouse Urinary Bladder. Journal of Pharmacological Sciences, 2007, 103, 121-126.	2.5	14
47	Spontaneous and nicotine-induced Ca ²⁺ oscillations mediated by Ca ²⁺ influx in rat pinealocytes. American Journal of Physiology - Cell Physiology, 2014, 306, C1008-C1016.	4.6	14
48	Novel Spliced Variants of Large-Conductance Ca2+-Activated K+-Channel β2-Subunit in Human and Rodent Pancreas. Journal of Pharmacological Sciences, 2010, 114, 198-205.	2.5	13
49	Direct molecular interaction of caveolin-3 with KCa1.1 channel in living HEK293 cell expression system. Biochemical and Biophysical Research Communications, 2013, 430, 1169-1174.	2.1	13
50	Mechanisms Underlying the Activation of Large Conductance Ca2+-Activated K+ Channels by Nordihydroguaiaretic Acid. The Japanese Journal of Pharmacology, 2002, 89, 53-63.	1.2	12
51	Modulation of TMEM16A-Channel Activity as Ca2+ Activated Clâ^' Conductance via the Interaction With Actin Cytoskeleton in Murine Portal Vein. Journal of Pharmacological Sciences, 2014, 125, 107-111.	2.5	12
52	Ryanodine receptor type 3 does not contribute to contractions in the mouse myometrium regardless of pregnancy. Pflugers Archiv European Journal of Physiology, 2017, 469, 313-326.	2.8	12
53	Membrane Hyperpolarization Induced by Endoplasmic Reticulum Stress Facilitates Ca2+ Influx to Regulate Cell Cycle Progression in Brain Capillary Endothelial Cells. Journal of Pharmacological Sciences, 2014, 125, 227-232.	2.5	11
54	Involvement of Inositol 1,4,5-Trisphosphate Formation in the Voltage-Dependent Regulation of the Ca ²⁺ Concentration in Porcine Coronary Arterial Smooth Muscle Cells. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 486-496.	2.5	10

#	Article	IF	CITATIONS
55	Total internal reflection fluorescence imaging of Ca2+-induced Ca2+ release in mouse urinary bladder smooth muscle cells. Biochemical and Biophysical Research Communications, 2012, 427, 54-59.	2.1	10
56	Modulation of Ca ²⁺ oscillation and melatonin secretion by BK _{Ca} channel activity in rat pinealocytes. American Journal of Physiology - Cell Physiology, 2016, 310, C740-C747.	4.6	10
57	Negative regulation of cellular Ca2+ mobilization by ryanodine receptor type 3 in mouse mesenteric artery smooth muscle. American Journal of Physiology - Cell Physiology, 2018, 315, C1-C9.	4.6	10
58	Hypoxic stress upregulates K _{ir} 2.1 expression by a pathway including hypoxic-inducible factor-11± and dynamin2 in brain capillary endothelial cells. American Journal of Physiology - Cell Physiology, 2018, 315, C202-C213.	4.6	10
59	Conversion of Ca2+ oscillation into propagative electrical signals by Ca2+-activated ion channels and connexin as a reconstituted Ca2+ clock model for the pacemaker activity. Biochemical and Biophysical Research Communications, 2019, 510, 242-247.	2.1	9
60	Oxidative stress facilitates cell death by inhibiting Orai1-mediated Ca2+ entry in brain capillary endothelial cells. Biochemical and Biophysical Research Communications, 2020, 523, 153-158.	2.1	9
61	Involvement of the γ1 subunit of the large-conductance Ca2+-activated K+ channel in the proliferation of human somatostatinoma cells. Biochemical and Biophysical Research Communications, 2020, 525, 1032-1037.	2.1	9
62	Comparative analysis of age in monocrotaline-induced pulmonary hypertensive rats. Journal of Pharmacological Sciences, 2021, 147, 81-85.	2.5	9
63	Hypoxia increases the proliferation of brain capillary endothelial cells via upregulation of TMEM16A Ca2+-activated Clâ^² channels. Journal of Pharmacological Sciences, 2021, 146, 65-69.	2.5	8
64	Local Ca ²⁺ coupling between mitochondria and sarcoplasmic reticulum following depolarization in guinea pig urinary bladder smooth muscle cells. American Journal of Physiology - Cell Physiology, 2018, 314, C88-C98.	4.6	7
65	Roles of LRRC26 as an auxiliary γ1-subunit of large-conductance Ca ²⁺ -activated K ⁺ channels in bronchial smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L366-L375.	2.9	7
66	Swelling-activated ClC-3 activity regulates prostaglandin E2 release in human OUMS-27 chondrocytes. Biochemical and Biophysical Research Communications, 2021, 537, 29-35.	2.1	7
67	Regulation of Ryanodine Receptor–Mediated Ca2+ Release in Vas Deferens Smooth Muscle Cells. Journal of Pharmacological Sciences, 2009, 110, 78-86.	2.5	5
68	Dynamic erectile responses of a novel penile organ model utilizing TPEMâ€. Biology of Reproduction, 2021, 104, 875-886.	2.7	5
69	Involvement of TREK1 channels in the proliferation of human hepatic stellate LX-2 cells. Journal of Pharmacological Sciences, 2022, 148, 286-294.	2.5	5
70	Rapid Na+ accumulation by a sustained action potential impairs mitochondria function and induces apoptosis in HEK293†cells expressing non-inactivating Na+ channels. Biochemical and Biophysical Research Communications, 2019, 513, 269-274.	2.1	4
71	Single Molecule Fluorescence Imaging Reveals the Stoichiometry of BKÎ ³ 1 Subunit in Living HEK293 Cell Expression System. Biological and Pharmaceutical Bulletin, 2020, 43, 1118-1122.	1.4	4
72	Downregulation of Ca2+-Activated Clâ^' Channel TMEM16A Mediated by Angiotensin II in Cirrhotic Portal Hypertensive Mice. Frontiers in Pharmacology, 2022, 13, 831311.	3.5	4

#	Article	IF	CITATIONS
73	Up-Regulation of the Voltage-Gated K _V 2.1 K ⁺ Channel in the Renal Arterial Myocytes of Dahl Salt-Sensitive Hypertensive Rats. Biological and Pharmaceutical Bulletin, 2017, 40, 1468-1474.	1.4	3
74	Calcium-Sensing Receptor Is Functionally Expressed in the Cochlear Perilymphatic Compartment and Essential for Hearing. Frontiers in Molecular Neuroscience, 2019, 12, 175.	2.9	3
75	SKF96365 activates calcium-sensing receptors in pulmonary arterial smooth muscle cells. Biochemical and Biophysical Research Communications, 2022, 607, 44-48.	2.1	3
76	Mitofusin 2 positively regulates Ca ²⁺ signaling by tethering the sarcoplasmic reticulum and mitochondria in rat aortic smooth muscle cells. American Journal of Physiology - Cell Physiology, 2022, 323, C295-C305.	4.6	3
77	Development of a Novel Cell-Based Assay System for High-Throughput Screening of Compounds Acting on Background Two-Pore Domain K+ Channels. SLAS Discovery, 2019, 24, 641-652.	2.7	2
78	miRNAâ€⊋9b Directly Downregulates K + Channel Expression and Function in IPAHâ€PASMC. FASEB Journal, 2015, 29, 662.16.	0.5	2
79	Ca ²⁺ Signaling and Proliferation <i>via</i> Ca ²⁺ -Sensing Receptors in Human Hepatic Stellate LX-2 Cells. Biological and Pharmaceutical Bulletin, 2022, 45, 664-667.	1.4	2
80	<i>Synchronized simulation with heart</i> . Focus on "Simulation of the effects of moderate stimulation/inhibition of the β ₁ -adrenergic signaling system and its components in mouse ventricular myocytes― American Journal of Physiology - Cell Physiology, 2016, 310, C841-C843.	4.6	1
81	Involvement of small-conductance Ca2+-activated K+ (SKCa2) channels in spontaneous Ca2+ oscillations in rat pinealocytes. Biochemical and Biophysical Research Communications, 2022, 615, 157-162.	2.1	1
82	Downregulation of Ca ²⁺ -activated Cl ⁻ channel TMEM16A in cirrhotic portal hypertension. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY57-4.	0.0	0
83	Unique functions of ryanodine type3 in vascular and myometrial smooth muscles. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR26-3.	0.0	0
84	Heterodimerization of two pore domain K+ channel TASK1 and TALK2 in HEK293 heterologous expression systems. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-7-17.	0.0	0
85	HIF-1α-dynamin2-Kir2.1 pathway contributes to cell proliferation in brain capillary endothelial cells under hypoxic stress. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-2-25.	0.0	0
86	Functional molecular complexes of junctophilin-2 and caveolin-1 provide a structural/functional basis for Ca ²⁺ -microdomain formation in vascular smooth muscle cells. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-3-55.	0.0	0
87	LRRC26 is functional as an Auxiliary Subunit of Largeâ€Conductance Ca 2+ â€Activated K + (BK) Channel and regulates BK channel activity in Bronchial Smooth Muscle Cells. FASEB Journal, 2018, 32, 567.8.	0.5	0
88	Identification of a new splice variant of large onductance Ca 2+ â€activated K + (BK) channel α subunit from human chondrocyte. FASEB Journal, 2018, 32, 750.27.	0.5	0
89	Functional molecular complexes of junctophilinâ€2 and caveolinâ€1 provide a structural/functional basis for Ca ²⁺ â€microdomain formation between BK _{Ca} channels and RyRs in vascular smooth muscle cells. FASEB Journal, 2018, 32, 581.10.	0.5	0