
Gail R Ter Haar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1873048/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methods of monitoring thermal ablation of soft tissue tumors – A comprehensive review. Medical Physics, 2022, 49, 769-791.	3.0	23
2	Latest Advances in the Use of Therapeutic Focused Ultrasound in the Treatment of Pancreatic Cancer. Cancers, 2022, 14, 638.	3.7	16
3	Characterization of Acoustic, Cavitation, and Thermal Properties of Poly(vinyl alcohol) Hydrogels for Use as Therapeutic Ultrasound Tissue Mimics. Ultrasound in Medicine and Biology, 2022, 48, 1095-1109.	1.5	11
4	Recommendations for Reporting Therapeutic Ultrasound Treatment Parameters. Ultrasound in Medicine and Biology, 2022, 48, 1299-1308.	1.5	8
5	In vitro characterisation of ultrasound-induced heating effects in the mother and fetus: A clinical perspective. Ultrasound, 2021, 29, 73-82.	0.7	1
6	Quantitative prediction of the extent of pelvic tumour ablation by magnetic resonance-guided high intensity focused ultrasound. International Journal of Hyperthermia, 2021, 38, 1111-1125.	2.5	0
7	Feasibility of palliating recurrent gynecological tumors with MRGHIFU: comparison of symptom, quality-of-life, and imaging response in intra and extra-pelvic disease. International Journal of Hyperthermia, 2021, 38, 623-632.	2.5	3
8	Ultrasound-Responsive Nanocarriers in Cancer Treatment: A Review. ACS Pharmacology and Translational Science, 2021, 4, 589-612.	4.9	65
9	AAPM Task Group 241: A medical physicist's guide to MRIâ€guided focused ultrasound body systems. Medical Physics, 2021, 48, e772-e806.	3.0	9
10	Pulsed focused ultrasound can improve the anti-cancer effects of immune checkpoint inhibitors in murine pancreatic cancer. Journal of the Royal Society Interface, 2021, 18, 20210266.	3.4	25
11	Inertial Cavitation Behaviors Induced by Nonlinear Focused Ultrasound Pulses. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2884-2895.	3.0	10
12	HSP90 inhibition acts synergistically with heat to induce a pro-immunogenic form of cell death in colon cancer cells. International Journal of Hyperthermia, 2021, 38, 1443-1456.	2.5	1
13	A Review of High-Intensity Focused Ultrasound in Urology. Cancers, 2021, 13, 5696.	3.7	8
14	A Polyvinyl Alcohol-Based Thermochromic Material for Ultrasound Therapy Phantoms. Ultrasound in Medicine and Biology, 2020, 46, 3135-3144.	1.5	21
15	Prediction of pelvic tumour coverage by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) from referral imaging. International Journal of Hyperthermia, 2020, 37, 1033-1045.	2.5	3
16	Heating technology for malignant tumors: a review. International Journal of Hyperthermia, 2020, 37, 711-741.	2.5	211
17	3D tumour spheroids for the prediction of the effects of radiation and hyperthermia treatments. Scientific Reports, 2020, 10, 1653.	3.3	71
18	Therapeutic ultrasound experiments in vitro: Review of factors influencing outcomes and reproducibility. Ultrasonics, 2020, 107, 106167.	3.9	29

#	Article	IF	CITATIONS
19	Focused Ultrasound-Mediated Hyperthermia in Vitro: An Experimental Arrangement for Treating Cells under Tissue-Mimicking Conditions. Ultrasound in Medicine and Biology, 2019, 45, 3290-3297.	1.5	7
20	â€~Relationship between thermal dose and cell death for "rapid―ablative and "slow―hyperthermic heating'. International Journal of Hyperthermia, 2019, 36, 228-242.	2.5	28
21	MR guided high intensity focused ultrasound (MRgHIFU) for treating recurrent gynaecological tumours: a pilot feasibility study. British Journal of Radiology, 2019, 92, 20181037.	2.2	8
22	Maternal and fetal cardiometabolic recovery following ultrasound-guided high-intensity focused ultrasound placental vascular occlusion. Journal of the Royal Society Interface, 2019, 16, 20190013.	3.4	8
23	Comparison of Imaging Changes and Pain Responses in Patients with Intra- or Extraosseous Bone Metastases Treated Palliatively with Magnetic Resonance-Guided High-Intensity–Focused Ultrasound. Journal of Vascular and Interventional Radiology, 2019, 30, 1351-1360.e1.	0.5	8
24	Quantitative photoacoustic imaging study of tumours in vivo: Baseline variations in quantitative measurements. Photoacoustics, 2019, 13, 53-65.	7.8	15
25	A comprehensive model for heat-induced radio-sensitisation. International Journal of Hyperthermia, 2018, 34, 392-402.	2.5	19
26	Response to comment by G. Borasi. International Journal of Hyperthermia, 2018, 34, 404-406.	2.5	0
27	Trans-abdominal in vivo placental vessel occlusion using High Intensity Focused Ultrasound. Scientific Reports, 2018, 8, 13631.	3.3	10
28	Dependence of inertial cavitation induced by high intensity focused ultrasound on transducer <i>F</i> -number and nonlinear waveform distortion. Journal of the Acoustical Society of America, 2018, 144, 1160-1169.	1.1	20
29	EP-2335: 3D tumour spheroids as an alternative to clonogenic assays for predicting radiation response in vivo. Radiotherapy and Oncology, 2018, 127, S1288.	0.6	0
30	Value of diffusion-weighted imaging for monitoring tissue change during magnetic resonance-guided high-intensity focused ultrasound therapy in bone applications: an ex-vivo study. European Radiology Experimental, 2018, 2, 10.	3.4	6
31	Noninvasive high-intensity focused ultrasound treatment of twin-twin transfusion syndrome: A preliminary in vivo study. Science Translational Medicine, 2016, 8, 347ra95.	12.4	28
32	HIFU Tissue Ablation: Concept and Devices. Advances in Experimental Medicine and Biology, 2016, 880, 3-20.	1.6	93
33	Quality assurance for clinical high intensity focused ultrasound fields. International Journal of Hyperthermia, 2015, 31, 193-202.	2.5	16
34	Ultrasound-guided therapeutic focused ultrasound: Current status and future directions. International Journal of Hyperthermia, 2015, 31, 77-89.	2.5	115
35	Heat and sound: focused ultrasound in the clinic. International Journal of Hyperthermia, 2015, 31, 223-224.	2.5	10
36	International consensus on use of focused ultrasound for painful bone metastases: Current status and future directions. International Journal of Hyperthermia, 2015, 31, 251-259.	2.5	56

#	Article	IF	CITATIONS
37	Ultrasound: The versatile energy source. International Journal of Hyperthermia, 2015, 31, 75-76.	2.5	1
38	A study of thermal dose-induced autophagy, apoptosis and necroptosis in colon cancer cells. International Journal of Hyperthermia, 2015, 31, 476-488.	2.5	46
39	Towards a dosimetric framework for therapeutic ultrasound. International Journal of Hyperthermia, 2015, 31, 182-192.	2.5	34
40	Cavitation-Enhanced Thermal Effects and Applications. , 2015, , 151-206.		0
41	On measurement of the acoustic nonlinearity parameter using the finite amplitude insertion substitution (FAIS) technique. Metrologia, 2015, 52, 406-422.	1.2	16
42	Abstract 3611: An investigation of thermal dose as a parameter to model the thermal effects of high intensity focused ultrasound in cancer therapy. , 2015, , .		0
43	Focused ultrasound development and clinical adoption: 2013 update on the growth of the field. Journal of Therapeutic Ultrasound, 2014, 2, 2.	2.2	20
44	Telling it like it is. Journal of Therapeutic Ultrasound, 2013, 1, 4.	2.2	6
45	A Comparison of Acoustic Cavitation Detection Thresholds Measured with Piezo-electric and Fiber-optic Hydrophone Sensors. Ultrasound in Medicine and Biology, 2013, 39, 2406-2421.	1.5	16
46	The road to clinical use of high-intensity focused ultrasound for liver cancer: technical and clinical consensus. Journal of Therapeutic Ultrasound, 2013, 1, 13.	2.2	76
47	Calibration of Ultrasound Backscatter Temperature Imaging for High-Intensity Focused Ultrasound Treatment Planning. Ultrasound in Medicine and Biology, 2013, 39, 1596-1612.	1.5	16
48	Do We Need to Restrict the Use of Doppler Ultrasound in the First Trimester of Pregnancy?. Ultrasound in Medicine and Biology, 2013, 39, 374-380.	1.5	14
49	Safety first: progress in calibrating high-intensity focused ultrasound treatments. Imaging in Medicine, 2013, 5, 567-575.	0.0	13
50	Ultrasound mediated drug delivery: A 21st century phoenix?. International Journal of Hyperthermia, 2012, 28, 279-281.	2.5	3
51	Principles of High-Intensity Focused Ultrasound. , 2012, , 51-63.		7
52	A model of acoustic absorption in fluids based on a continuous distribution of relaxation times. Wave Motion, 2012, 49, 93-108.	2.0	14
53	Modelling of the acoustic field of a multi-element HIFU array scattered by human ribs. Physics in Medicine and Biology, 2011, 56, 5553-5581.	3.0	30
54	Guidance on Reporting Ultrasound Exposure Conditions for Bio-Effects Studies. Ultrasound in Medicine and Biology, 2011, 37, 177-183.	1.5	73

#	Article	IF	CITATIONS
55	Ultrasonic imaging: safety considerations. Interface Focus, 2011, 1, 686-697.	3.0	81
56	A Study of Bubble Activity Generated in Ex Vivo Tissue by High Intensity Focused Ultrasound. Ultrasound in Medicine and Biology, 2010, 36, 1327-1344.	1.5	90
57	Extracorporeal high intensity focused ultrasound for renal tumours: a 3â€year followâ€up. BJU International, 2010, 106, 1004-1009.	2.5	89
58	The new British Medical Ultrasound Society Guidelines for the safe use of diagnostic ultrasound equipment. Ultrasound, 2010, 18, 50-51.	0.7	19
59	Abstract 3981: Characterization of high intensity focused Ultrasound induced vascular damage using histology, MR, and Ultrasound Imaging. , 2010, , .		0
60	Safety and bio-effects of ultrasound contrast agents. Medical and Biological Engineering and Computing, 2009, 47, 893-900.	2.8	118
61	The Resurgence of Therapeutic Ultrasound – A 21st Century Phenomenon. Ultrasonics, 2008, 48, 233.	3.9	9
62	Results of a Survey of Exposure Conditions used in Ultrasound Scans in the UK, February 2007. Ultrasound, 2008, 16, 110-113.	0.7	6
63	Investigation of the viscous heating artefact arising from the use of thermocouples in a focused ultrasound field. Physics in Medicine and Biology, 2008, 53, 4759-4776.	3.0	112
64	Turning up the Power: High Intensity Focused Ultrasound (HIFU) for the Treatment of Cancer. Ultrasound, 2007, 15, 73-77.	0.7	5
65	CAVITATION DETECTION IN EX VIVO BOVINE LIVER TISSUE EXPOSED TO HIGH INTENSITY FOCUED ULTRASOUND (HIFU). , 2007, , .		8
66	A New Clinical HIFU System (Teleson II). AIP Conference Proceedings, 2007, , .	0.4	1
67	A Study of Cavitation Activity in Ex vivo Tissue Exposed to High Intensity Focused Ultrasound. AlP Conference Proceedings, 2007, , .	0.4	5
68	Spatial Control of Microbubble-Mediated Non-Viral Gene Delivery Using Focused Ultrasound. AIP Conference Proceedings, 2007, , .	0.4	0
69	High Intensity Focused Ultrasound: Past, present and future. International Journal of Hyperthermia, 2007, 23, 85-87.	2.5	116
70	High-intensity focused ultrasound ablation of breast cancer. Expert Review of Anticancer Therapy, 2007, 7, 823-831.	2.4	47
71	High intensity focused ultrasound: Physical principles and devices. International Journal of Hyperthermia, 2007, 23, 89-104.	2.5	579
72	Attenuation Estimation and Temperature Imaging Using Backscatter for Extracorporeal HIFU Treatment Planning. AIP Conference Proceedings, 2007, , .	0.4	4

#	Article	IF	CITATIONS
73	A Comparison of Real-time Feedback and Tissue Response to Ultrasound-Guided High Intensity Focused Ultrasound (HIFU) Ablation using Scanned Track Exposure Regimes. AIP Conference Proceedings, 2007, ,	0.4	1
74	High Intensity Focused Ultrasound (HIFU) as a Salvage Treatment for Recurrent Prostate Cancer after Brachytherapy — a Feasibility Study. AIP Conference Proceedings, 2007, , .	0.4	3
75	A Pilot Study Investigating the Potential of High-Intensity Focused Ultrasound to Treat Tumours Rapidly. AIP Conference Proceedings, 2007, , .	0.4	0
76	Therapeutic applications of ultrasound. Progress in Biophysics and Molecular Biology, 2007, 93, 111-129.	2.9	510
77	Thermal ablation of uterine fibroids using MR-guided focused ultrasound-a truly non-invasive treatment modality. European Radiology, 2007, 17, 2505-2511.	4.5	86
78	Physical parameters affecting ultrasound/microbubble-mediated gene delivery efficiency in vitro. Ultrasound in Medicine and Biology, 2006, 32, 1269-1279.	1.5	133
79	The use of a segmented transducer for rib sparing in HIFU treatments. Ultrasound in Medicine and Biology, 2006, 32, 1753-1761.	1.5	75
80	The Design And Implementation Of A Passive Cavitation Detection System For Use With Ex Vivo Tissue. AIP Conference Proceedings, 2006, , .	0.4	4
81	Temperature Measurement in ex-vivo Bovine Liver using Fine-Wire and Thin-Film Thermocouples. AIP Conference Proceedings, 2006, , .	0.4	5
82	546. Targeted Non-Viral Gene Delivery Using Microbubbles and Focused Ultrasound. Molecular Therapy, 2006, 13, S210.	8.2	0
83	730: High-Intensity Focused Ultrasound for the Treatment of Small Renal Tumours - The Oxford Experience. Journal of Urology, 2006, 175, 236-237.	0.4	1
84	Detection and Measurement of Acoustic Fields. , 2005, , 69-91.		0
85	Attenuation and Absorption. , 2005, , 93-166.		29
86	Reflection and Scattering. , 2005, , 191-222.		13
87	Ultrasonic Images and the Eye of the Observer. , 2005, , 237-253.		1
88	Generation and Structure of Acoustic Fields. , 2005, , 41-68.		1
89	Methodology for Imaging Time-Dependent Phenomena. , 2005, , 303-335.		4

#	Article	IF	CITATIONS
91	Speed of Sound. , 2005, , 167-190.		15
92	Ultrasonic Biophysics. , 2005, , 349-406.		3
93	Basic Acoustic Theory. , 2005, , 1-40.		1
94	The Wider Context of Sonography. , 2005, , 337-347.		2
95	Assessment of Possible Hazard in Use. , 2005, , 457-486.		1
96	Epilogue: Historical Perspectives. , 2005, , 487-489.		0
97	Physical Chemistry of the Ultrasound-Tissue Interaction. , 2005, , 223-235.		9
98	Methodology for Clinical Investigation. , 2005, , 255-302.		3
99	1400: Early Clinical Experience Using High-Intensity Focused Ultrasound for the Treatment of Renal Tumours. Journal of Urology, 2005, 173, 379-380.	0.4	0
100	Contrast-enhanced ultrasound assessment of tissue response to high-intensity focused ultrasound. Ultrasound in Medicine and Biology, 2004, 30, 851-854.	1.5	65
101	Imaging of temperature-induced echo strain: preliminary in vitro study to assess feasibility for guiding focused ultrasound surgery. Ultrasound in Medicine and Biology, 2004, 30, 345-356.	1.5	76
102	Sinogram-based dynamic imaging using a slow positron camera rotation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 513, 70-73.	1.6	0
103	Acoustic Surgery Devices in Clinical Trials. Physics Today, 2002, 55, 13-13.	0.3	0
104	International Society for Therapeutic Ultrasound (ISTU). Ultrasound in Medicine and Biology, 2002, 28, 137.	1.5	0
105	Acoustic Surgery. Physics Today, 2001, 54, 29-34.	0.3	98
106	Use of overpressure to assess the role of bubbles in focused ultrasound lesion shape in vitro. Ultrasound in Medicine and Biology, 2001, 27, 695-708.	1.5	128
107	High Intensity Focused Ultrasound for the Treatment of Tumors. Echocardiography, 2001, 18, 317-322.	0.9	153
108	International recommendations and guidelines for the safe use of diagnostic ultrasound in medicine. Ultrasound in Medicine and Biology, 2000, 26, 355-366.	1.5	335

#	Article	IF	CITATIONS
109	The intensity dependence of lesion position shift during focused ultrasound surgery. Ultrasound in Medicine and Biology, 2000, 26, 441-450.	1.5	108
110	Histological study of normal and tumor-bearing liver treated with focused ultrasound. Ultrasound in Medicine and Biology, 1999, 25, 847-856.	1.5	54
111	A 3-D finite-element model for computation of temperature profiles and regions of thermal damage during focused ultrasound surgery exposures. Ultrasound in Medicine and Biology, 1998, 24, 1489-1499.	1.5	67
112	Treatment of implanted liver tumors with focused ultrasound. Ultrasound in Medicine and Biology, 1998, 24, 1475-1488.	1.5	36
113	<title>Phase one clinical trial of the use of focused ultrasound surgery for the treatment of soft-tissue tumors</title> . , 1998, , .		17
114	<title>Focused ultrasound surgery-induced vascular occlusion in fetal medicine</title> . , 1998, , .		4
115	<title>Intensity dependence of focused ultrasound lesion position</title> ., 1998, 3249, 246.		6
116	Influence of ablated tissue on the formation of high-intensity focused ultrasound lesions. Ultrasound in Medicine and Biology, 1997, 23, 921-931.	1.5	74
117	The sensitivity of biological tissue to ultrasound. Ultrasound in Medicine and Biology, 1997, 23, 805-812.	1.5	169
118	Focused ultrasound therapy. Current Opinion in Urology, 1994, 4, 89-92.	1.8	8
119	Histological changes in rat liver tumours treated with high-intensity focused ultrasound. Ultrasound in Medicine and Biology, 1993, 19, 67-74.	1.5	116
120	Synergism between hyperthermia, ultrasound and Î ³ irradiation. Ultrasound in Medicine and Biology, 1991, 17, 607-612.	1.5	16
121	Comments on "effects of pulsed ultrasound and temperature on the development of rat embryos in culture― Teratology, 1991, 43, 551-551.	1.6	4
122	The effect of ultrasound on the cytoxicity of adriamycin. British Journal of Radiology, 1990, 63, 542-546.	2.2	94
123	Ultrasound in physiotherapy in the United Kingdom: Results of a questionnaire. Physiotherapy Practice, 1988, 4, 69-72.	0.3	36
124	Standards for reporting ultrasonic exposures. Ultrasound in Medicine and Biology, 1987, 13, L668.	1.5	0
125	The use of ultrasound by physiotherapists in Britain, 1985. Ultrasound in Medicine and Biology, 1987, 13, 659-663.	1.5	63
126	A personal viewpoint. Physiotherapy Practice, 1985, 1, 106-108.	0.3	2

#	Article	IF	CITATIONS
127	Heating techniques in hyperthermia. British Journal of Radiology, 1981, 54, 443-466.	2.2	90
128	Ultrasonic irradiation of mammalian cells <i>in vitro</i> at hyperthermic temperatures. British Journal of Radiology, 1980, 53, 784-789.	2.2	44
129	Ultrastructural changes in the mouse uterus brought about by ultrasonic irradiation at therapeutic intensities in standing wave fields. Ultrasound in Medicine and Biology, 1979, 5, 167-179.	1.5	44
130	Blood cell banding in ultrasonic standing wave fields: A physical analysis. Ultrasound in Medicine and Biology, 1978, 4, 111-123.	1.5	71
131	High-intensity focused ultrasound (HIFU) treatment of liver cancer. , 0, , 92-107.		0