Bogdan Z Dlugogorski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1873024/publications.pdf

Version: 2024-02-01

283 papers

7,271 citations

39 h-index 102304 66 g-index

285 all docs

285 docs citations

times ranked

285

5701 citing authors

#	Article	IF	CITATIONS
1	Coal oxidation at low temperatures: oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Progress in Energy and Combustion Science, 2003, 29, 487-513.	15.8	556
2	Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Progress in Energy and Combustion Science, 2009, 35, 245-274.	15.8	401
3	Thermal decomposition of brominated flame retardants (BFRs): Products and mechanisms. Progress in Energy and Combustion Science, 2019, 70, 212-259.	15.8	168
4	Analysis of the mechanism of the low-temperature oxidation of coal. Combustion and Flame, 2003, 134, 107-117.	2.8	161
5	Pathways for Production of CO2and CO in Low-Temperature Oxidation of Coal. Energy & Coals, 2003, 17, 150-158.	2.5	116
6	Formation of dioxins and furans during combustion of treated wood. Progress in Energy and Combustion Science, 2007, 33, 384-408.	15.8	101
7	Ab Initio Procedure for Aqueous-Phase pKa Calculation:  The Acidity of Nitrous Acid. Journal of Physical Chemistry A, 2006, 110, 11371-11376.	1.1	97
8	Dehydroxylation of serpentine minerals: Implications for mineral carbonation. Renewable and Sustainable Energy Reviews, 2014, 31, 353-367.	8.2	95
9	Thermal decomposition of solid oxygenated complexes formed by coal oxidation at low temperatures. Fuel, 2002, 81, 1913-1923.	3.4	89
10	Kinetic modeling of low-temperature oxidation of coal. Combustion and Flame, 2002, 131, 452-464.	2.8	86
11	Theoretical analysis of reaction regimes in low-temperature oxidation of coal. Fuel, 1999, 78, 1073-1081.	3.4	84
12	A Mechanistic and Kinetic Study on the Formation of PBDD/Fs from PBDEs. Environmental Science & Environmental & Environmental & Environmental & Environmental & Environmental	4.6	82
13	Low temperature oxidation of linseed oil: a review. Fire Science Reviews, 2012, 1, .	0.9	80
14	Reaction of phenol with singlet oxygen. Physical Chemistry Chemical Physics, 2019, 21, 171-183.	1.3	75
15	Performance of a Co-Ni catalyst for propane reforming under low steam-to-carbon ratios. Chemical Engineering Journal, 2004, 102, 119-130.	6.6	74
16	Quantum Chemical Investigation of Formation of Polychlorodibenzo-p-Dioxins and Dibenzofurans from Oxidation and Pyrolysis of 2-Chlorophenol. Journal of Physical Chemistry A, 2007, 111, 2563-2573.	1.1	73
17	Sequestration of atmospheric CO2 in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates. Chemical Geology, 2013, 358, 156-169.	1.4	73
18	Experimental investigation of alumina and quartz as dielectrics for a cylindrical double dielectric barrier discharge reactor in argon diluted methane plasma. Chemical Engineering Journal, 2012, 180, 178-189.	6.6	65

#	Article	IF	CITATIONS
19	Formation and Chlorination of Carbazole, Phenoxazine, and Phenazine. Environmental Science & Emp; Technology, 2015, 49, 2215-2221.	4.6	65
20	Examination of CO2, CO, and H2O Formation during Low-Temperature Oxidation of a Bituminous Coal. Energy & Energ	2.5	64
21	Decomposition of selected chlorinated volatile organic compounds by ceria (CeO ₂). Catalysis Science and Technology, 2017, 7, 3902-3919.	2.1	64
22	Mechanism of Thermal Decomposition of Tetrabromobisphenol A (TBBA). Journal of Physical Chemistry A, 2014, 118, 9338-9346.	1.1	61
23	Review of Chemical Reactivity of Singlet Oxygen with Organic Fuels and Contaminants. Chemical Record, 2021, 21, 315-342.	2.9	59
24	Experimental Study on Low-Temperature Oxidation of an Australian Coal. Energy & Experimental Study on Low-Temperature Oxidation of an Australian Coal. Energy & Experimental Study on Low-Temperature Oxidation of an Australian Coal. Energy & Experimental Study on Low-Temperature Oxidation of an Australian Coal. Energy & Experimental Study on Low-Temperature Oxidation of an Australian Coal. Energy & Experimental Study on Low-Temperature Oxidation of an Australian Coal. Energy & Experimental Study on Low-Temperature Oxidation of an Australian Coal. Energy & Experimental Study on Low-Temperature Oxidation of an Australian Coal. Energy & Experimental Study on Low-Temperature Oxidation of an Australian Coal. Energy & Experimental Study on Low-Temperature Oxidation of an Australian Coal. Energy & Experimental Study on Low-Temperature Oxidation of an Australian Coal. Energy & Experimental Study on Low-Temperature Oxidation of an Australian Coal. Energy & Experimental Study on Low-Temperature Oxidation of an Australian Coal. Energy & Experimental Study on Low-Temperature Oxidation of Australian Coal. Energy & Experimental Study on Low-Temperature Oxidation of Australian Coal. Energy & Experimental Study on Low-Temperature Oxidation of Australian Coal. Energy & Experimental Study on Low-Temperature Oxidation of Australian Coal. Energy & Experimental Study on Low-Temperature Oxidation of Australian Coal. Energy & Experimental Study on Low-Temperature Oxidation of Australian Coal. Energy & Experimental Study on Low-Temperature Oxidation of Experimental Study on Coal. Energy & Experimental Study & Exp	2.5	57
25	Role of inherent water in low-temperature oxidation of coal. Combustion Science and Technology, 2003, 175, 253-270.	1.2	52
26	Thermal Decomposition of 1,2-Bis(2,4,6-tribromophenoxy)ethane (BTBPE), a Novel Brominated Flame Retardant. Environmental Science & Eamp; Technology, 2014, 48, 14335-14343.	4.6	51
27	Thermal Recycling of Brominated Flame Retardants with Fe ₂ O ₃ . Journal of Physical Chemistry A, 2016, 120, 6039-6047.	1.1	50
28	Carbon deposition and gasification kinetics of used lanthanide-promoted Co-Ni/Al2O3 catalysts from CH4 dry reforming. Catalysis Communications, 2012, 26, 183-188.	1.6	48
29	Formation of Environmentally Persistent Free Radicals on $\hat{l}\pm$ -Al ₂ O ₃ . Environmental Science & Environ	4.6	48
30	Thermal decomposition of perfluorinated carboxylic acids: Kinetic model and theoretical requirements for PFAS incineration. Chemosphere, 2022, 286, 131685.	4.2	48
31	Thermal Activation of Antigorite for Mineralization of CO ₂ . Environmental Science & Environmental &	4. 6	45
32	Effects of Wind Flow on Self-Heating Characteristics of Coal Stockpiles. Chemical Engineering Research and Design, 2000, 78, 445-453.	2.7	44
33	Theoretical Study of Unimolecular Decomposition of Catechol. Journal of Physical Chemistry A, 2010, 114, 1060-1067.	1.1	44
34	On the Chemistry of Iron Oxide Supported on \hat{I}^3 -Alumina and Silica Catalysts. ACS Omega, 2018, 3, 5362-5374.	1.6	44
35	Rate constants for hydrogen abstraction reactions by the hydroperoxyl radical from methanol, ethenol, acetaldehyde, toluene, and phenol. Journal of Computational Chemistry, 2011, 32, 1725-1733.	1.5	43
36	IAFSS agenda 2030 for a fire safe world. Fire Safety Journal, 2019, 110, 102889.	1.4	43

#	Article	IF	Citations
37	Sealability Properties of Fluorine-Free Fire-Fighting Foams (FfreeF). Fire Technology, 2008, 44, 297-309.	1.5	42
38	The stability of Co3O4, Fe2O3, Au/Co3O4 and Au/Fe2O3 catalysts in the catalytic combustion of lean methane mixtures in the presence of water. Catalysis Today, 2015, 258, 276-283.	2.2	42
39	Biocompatibility study of multi-layered hydroxyapatite coatings synthesized on Ti-6Al-4V alloys by RF magnetron sputtering for prosthetic-orthopaedic implant applications. Applied Surface Science, 2019, 463, 292-299.	3.1	42
40	Accurate Rate Constants for Decomposition of Aqueous Nitrous Acid. Inorganic Chemistry, 2012, 51, 2178-2185.	1.9	40
41	Energy cost of heat activating serpentinites for CO2 storage by mineralisation. International Journal of Greenhouse Gas Control, 2013, 17, 225-239.	2.3	40
42	Selection of acid for weak acid processing of wollastonite for mineralisation of CO2. Fuel, 2014, 122, 277-286.	3.4	40
43	Theoretical Study of the Ammoniaâ^'Hypochlorous Acid Reaction Mechanism. Journal of Physical Chemistry A, 2010, 114, 2597-2606.	1.1	39
44	Formation of PCDD/Fs in Oxidation of 2-Chlorophenol on Neat Silica Surface. Environmental Science & En	4.6	39
45	Experimental and chemical kinetic study of the pyrolysis of trifluoroethane and the reaction of trifluoromethane with methane. Journal of Fluorine Chemistry, 2010, 131, 751-760.	0.9	38
46	Zeolite-supported iron catalysts for allyl alcohol synthesis from glycerol. Applied Catalysis A: General, 2016, 509, 130-142.	2.2	38
47	Reaction of Aniline with Singlet Oxygen (O ₂ ¹ Î" _g). Journal of Physical Chemistry A, 2017, 121, 3199-3206.	1.1	38
48	Atmospheric emission of NO from mining explosives: A critical review. Atmospheric Environment, 2017, 167, 81-96.	1.9	38
49	Electronic, optical and bonding properties of MgCO3. Solid State Communications, 2010, 150, 848-851.	0.9	37
50	Formation of dibenzofuran, dibenzo-p-dioxin and their hydroxylated derivatives from catechol. Physical Chemistry Chemical Physics, 2015, 17, 1822-1830.	1.3	37
51	Catalytic Effect of CuO and Other Transition Metal Oxides in Formation of Dioxins:Â Theoretical Investigation of Reaction Between 2,4,5-Trichlorophenol and CuO. Environmental Science & Eamp; Technology, 2007, 41, 5708-5715.	4.6	36
52	Thermochemical Properties and Decomposition Pathways of Three Isomeric Semiquinone Radicals. Journal of Physical Chemistry A, 2010, 114, 1098-1108.	1.1	36
53	Dehydrohalogenation of ethyl halides. Tetrahedron Letters, 2014, 55, 4860-4868.	0.7	36
54	Quantum Chemical and Kinetic Study of Formation of 2-Chlorophenoxy Radical from 2-Chlorophenol:  Unimolecular Decomposition and Bimolecular Reactions with H, OH, Cl, and O ₂ . Journal of Physical Chemistry A, 2008, 112, 3680-3692.	1.1	34

#	Article	IF	Citations
55	Small-Scale Test Protocol for Firefighting Foams DEF(AUST)5706: Effect of Bubble Size Distribution and Expansion Ratio. Fire Technology, 2011, 47, 149-162.	1.5	34
56	Chemical bonding states and solar selective characteristics of unbalanced magnetron sputtered Ti _x M _{1â~'y} N _y films. RSC Advances, 2016, 6, 36373-36383.	1.7	34
57	Leaching of lepidolite and recovery of lithium hydroxide from purified alkaline pressure leach liquor by phosphate precipitation and lime addition. Hydrometallurgy, 2021, 201, 105538.	1.8	34
58	Hydrogen Abstraction from Hydrocarbons by NH ₂ . Journal of Physical Chemistry A, 2017, 121, 2221-2231.	1.1	33
59	Understanding the shrinkage of optical absorption edges of nanostructured Cd-Zn sulphide films for photothermal applications. Applied Surface Science, 2017, 392, 854-862.	3.1	33
60	Phase transformation mechanism of spodumene during its calcination. Minerals Engineering, 2019, 140, 105883.	1.8	33
61	Pyrolysis of permethrin and formation of precursors of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) under non-oxidative conditions. Chemosphere, 2009, 74, 1435-1443.	4.2	32
62	Identification and Quantitation of Volatile Organic Compounds from Oxidation of Linseed Oil. Industrial & Engineering Chemistry Research, 2012, 51, 5645-5652.	1.8	32
63	Emission of polyaromatic hydrocarbons, polychlorinated biphenyls and polychlorinated dibenzo-p-dioxins and furans from fires of wood chips. Fire Safety Journal, 2002, 37, 659-672.	1.4	31
64	First-principles study of the electronic, optical and bonding properties in dolomite. Computational Materials Science, 2011, 50, 1037-1042.	1.4	31
65	Formation of polybrominated dibenzofurans from polybrominated biphenyls. Chemosphere, 2015, 119, 1048-1053.	4.2	31
66	Theoretical Study of Reaction Pathways of Dibenzofuran and Dibenzo- <i>p</i> Dioxin under Reducing Conditions. Journal of Physical Chemistry A, 2007, 111, 7133-7140.	1.1	30
67	Computational Study of the Oxidation and Decomposition of Dibenzofuran under Atmospheric Conditions. Journal of Physical Chemistry A, 2008, 112, 6960-6967.	1.1	30
68	A first-principles density functional study of chlorophenol adsorption on Cu2O(110):CuO. Journal of Chemical Physics, 2009, 130, 184505.	1.2	30
69	Rate constants for reactions of ethylbenzene with hydroperoxyl radical. Combustion and Flame, 2013, 160, 9-16.	2.8	30
70	Hydrodesulfurization of Thiophene over Î ³ -Mo2N catalyst. Molecular Catalysis, 2018, 459, 21-30.	1.0	30
71	Effect of Added Nucleophilic Species on the Rate of Primary Amino Acid Nitrosation. Journal of the American Chemical Society, 2005, 127, 3664-3665.	6.6	29
72	Quantum Chemical Study of Low Temperature Oxidation Mechanism of Dibenzofuran. Journal of Physical Chemistry A, 2006, 110, 13560-13567.	1.1	29

#	Article	IF	CITATIONS
73	Bimetallic Co–Ni/Al2O3 catalyst for propane dry reforming: Estimation of reaction metrics from longevity runs. Chemical Engineering Science, 2010, 65, 66-73.	1.9	29
74	Oxidation of crystalline polyethylene. Combustion and Flame, 2015, 162, 3681-3690.	2.8	29
75	Thermal conductivity detection relative molar response factors for halogenated compounds. Journal of Chromatography A, 1999, 841, 187-195.	1.8	27
76	An Experimental and Kinetic Modeling Study of the Reaction of CHF3 with Methane. Environmental Science & Environmental Envir	4.6	27
77	Adsorption of chlorophenol on the $Cu(111)$ surface: A first-principles density functional theory study. Applied Surface Science, 2008, 254, 4218-4224.	3.1	27
78	Fischerâ€"Tropsch synthesis: Effect of promoter type on alumina-supported Mo carbide catalysts. Catalysis Today, 2011, 175, 450-459.	2.2	27
79	Investigation of the post-annealing electromagnetic response of Cu–Co oxide coatings via optical measurement and computational modelling. RSC Advances, 2017, 7, 16826-16835.	1.7	27
80	Recycling of zincite (ZnO) <i>via</i> uptake of hydrogen halides. Physical Chemistry Chemical Physics, 2018, 20, 1221-1230.	1.3	26
81	Gas-Phase Reaction of Halon 1301 (CBrF3) with Methane. Industrial & Engineering Chemistry Research, 1999, 38, 3345-3352.	1.8	25
82	An equilibrium ab initio atomistic thermodynamics study of chlorine adsorption on the Cu(001) surface. Physical Chemistry Chemical Physics, 2011, 13, 10306.	1.3	25
83	Chlorination of the $Cu(110)$ Surface and Copper Nanoparticles: A Density Functional Theory Study. Journal of Physical Chemistry C, 2011, 115, 13412-13419.	1.5	25
84	Mechanisms governing selective hydrogenation of acetylene over \hat{I}^3 -Mo ₂ N surfaces. Catalysis Science and Technology, 2017, 7, 943-960.	2.1	25
85	Formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) in oxidation of captan pesticide. Proceedings of the Combustion Institute, 2011, 33, 701-708.	2.4	24
86	Determination of toxic products released in combustion of pesticides. Progress in Energy and Combustion Science, 2012, 38, 400-418.	15.8	24
87	New Mechanistic Insights: Why Do Plants Produce Isoprene?. ACS Omega, 2016, 1, 220-225.	1.6	24
88	Structural Thermal Stability of Graphene Oxide-Doped Copper–Cobalt Oxide Coatings as a Solar Selective Surface. Journal of Materials Science and Technology, 2016, 32, 1179-1191.	5.6	24
89	Reactions of products from thermal degradation of PVC with nanoclusters of \hat{l}_{\pm} -Fe 2 O 3 (hematite). Chemical Engineering Journal, 2017, 323, 396-405.	6.6	24
90	Mg isotope fractionation during continental weathering and low temperature carbonation of ultramafic rocks. Geochimica Et Cosmochimica Acta, 2019, 262, 60-77.	1.6	24

#	Article	IF	Citations
91	Factors affecting the stability of foamed concentrated emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 150, 171-184.	2.3	23
92	A review of CFC and halon treatment technologies $\hat{a}\in$ The nature and role of catalysts. Catalysis Surveys From Asia, 2006, 10, 40-54.	1.0	23
93	Conversion of CHF3to CH2î—»CF2via Reaction with CH4and CaBr2. Environmental Science & Emp; Technology, 2008, 42, 5795-5799.	4.6	23
94	Optimization of antigorite heat preâ€treatment via kinetic modeling of the dehydroxylation reaction for CO ₂ mineralization., 2011, 1, 294-304.		23
95	Decomposition of ethylamine through bimolecular reactions. Combustion and Flame, 2016, 163, 532-539.	2.8	23
96	Mechanism of Formation of Volatile Organic Compounds from Oxidation of Linseed Oil. Industrial & Linguistry Research, 2012, 51, 5653-5661.	1.8	22
97	Formation of weathering-derived magnesite deposits in the New England Orogen, New South Wales, Australia: Implications from mineralogy, geochemistry and genesis of the Attunga magnesite deposit. Mineralium Deposita, 2013, 48, 525-541.	1.7	22
98	Catalytic conversion of glycerol to allyl alcohol; effect of a sacrificial reductant on the product yield. Catalysis Science and Technology, 2014, 4, 3090-3098.	2.1	22
99	Inhibition and Promotion of Pyrolysis by Hydrogen Sulfide (H ₂ S) and Sulfanyl Radical (SH). Journal of Physical Chemistry A, 2016, 120, 8941-8948.	1.1	22
100	Uniformity Of Radiant Heat Fluxes In Cone Calorimeter. Fire Safety Science, 2003, 7, 815-826.	0.3	22
101	An experimental and theoretical study of the nitrosation of ammonia and thiourea. Chemical Engineering Science, 2006, 61, 3186-3197.	1.9	21
102	Quantum Chemical Study on Formation of PCDT/TA from 2-Chlorothiophenol Precursor. Environmental Science & Environmental Scienc	4.6	21
103	Catalytic combustion of ventilation air methane (VAM) – long term catalyst stability in the presence of water vapour and mine dust. Catalysis Science and Technology, 2014, 4, 1793-1802.	2.1	21
104	Formation of PCDDs and PCDFs in the torrefaction of biomass with different chemical composition. Journal of Analytical and Applied Pyrolysis, 2017, 123, 126-133.	2.6	21
105	Formation of Polychlorinated Dibenzo- <i>p</i> pi>-Dioxins and Polychlorinated Dibenzofurans (PCDD/F) in Fires of Arsenic-Free Treated Wood:  Role of Organic Preservatives. Environmental Science & Environmental Science & Technology, 2007, 41, 6425-6432.	4.6	20
106	Conversion of Fluorine-Containing Ozone-Depleting and Greenhouse Gases to Valuable Polymers in a Nonthermal Plasma. Industrial & Depleting Chemistry Research, 2012, 51, 11279-11283.	1.8	20
107	Viscometric functions for FENE and generalized Lennard-Jones dumbbell liquids in Couette flow: molecular dynamics study. Journal of Non-Newtonian Fluid Mechanics, 1993, 48, 303-335.	1.0	19
108	Experimental and computational studies of the pyrolysis of CBrF3, and the reaction of CBrF3 with CH4. Chemical Engineering Science, 2000, 55, 4067-4078.	1.9	19

#	Article	IF	Citations
109	Conversion of CHF3 to CH2CF2 via reaction with CH4 in the presence of CBrF3: An experimental and kinetic modelling study. Journal of Hazardous Materials, 2010, 180, 181-187.	6.5	19
110	Interaction of Chlorine and Oxygen with the Cu(100) Surface. Journal of Physical Chemistry C, 2010, 114, 19048-19054.	1.5	19
111	Suppression Performance Comparison for Aspirated, Compressed-Air and In Situ Chemically Generated Class B Foams. Fire Technology, 2012, 48, 625-640.	1.5	19
112	Oxidation of Polyethylene under Corrosive NO _{<i>x</i>} Atmosphere. Journal of Physical Chemistry C, 2016, 120, 3766-3775.	1.5	19
113	Analytical Procedure for Proximate Analysis of Algal Biomass: Case Study for <i>Spirulina platensis</i> and <i>Chlorella vulgaris</i> Energy & Ener	2.5	19
114	Two-Step Reaction Mechanism of Roasting Spodumene with Potassium Sulfate. Inorganic Chemistry, 2021, 60, 3620-3625.	1.9	19
115	Gas-Phase Reaction of Halon 1211 (CBrClF2) with Methane. Industrial & Engineering Chemistry Research, 2001, 40, 3139-3143.	1.8	18
116	Assessing Influence of Experimental Parameters on Formation of PCDD/F from Ash Derived from Fires of CCA-Treated Wood. Environmental Science & Eamp; Technology, 2003, 37, 4148-4156.	4.6	18
117	Elementary reaction step model of the Nâ€nitrosation of ammonia. International Journal of Chemical Kinetics, 2007, 39, 645-656.	1.0	18
118	Oxidation reactions and spontaneous ignition of linseed oil. Proceedings of the Combustion Institute, 2011, 33, 2625-2632.	2.4	18
119	Mechanistic study of the reaction of CHF3 with CH4. Chemical Engineering Journal, 2011, 166, 822-831.	6.6	18
120	A Melamineâ€Modified βâ€Zeolite with Enhanced CO ₂ Capture Properties. Energy Technology, 2013, 1, 345-349.	1.8	18
121	Large-eddy simulation of methanol pool fires using an accelerated stochastic fields method. Combustion and Flame, 2016, 173, 89-98.	2.8	18
122	Photodecomposition of bromophenols. Chemosphere, 2016, 150, 749-758.	4.2	18
123	Effect of Fe2O3 nanoparticles on combustion of coal surrogate (Anisole): Enhanced ignition and formation of persistent free radicals. Proceedings of the Combustion Institute, 2019, 37, 3091-3099.	2.4	18
124	Propagation of Laminar Flames in Wet Premixed Natural Gas-Air Mixtures. Chemical Engineering Research and Design, 1998, 76, 81-89.	2.7	17
125	Experimental and computational studies of the thermal decomposition of halon 1211. International Journal of Chemical Kinetics, 2005, 37, 134-146.	1.0	17
126	Theoretical study of reactions of HO2 in low-temperature oxidation of benzene. Combustion and Flame, 2010, 157, 1325-1330.	2.8	17

#	Article	IF	CITATIONS
127	Thermal Decomposition of Captan and Formation Pathways of Toxic Air Pollutants. Environmental Science & Environmental Science	4.6	17
128	Partial oxidation of methane with nitrous oxide forms synthesis gas over cobalt exchanged ZSM-5. Catalysis Communications, 2014, 53, 42-46.	1.6	17
129	Study of thermally conditioned and weak acid-treated serpentinites for mineralisation of carbon dioxide. Minerals Engineering, 2014, 59, 17-30.	1.8	17
130	Mechanisms of transformation of polychlorinated diphenyl ethers into polychlorinated dibenzo-p-dioxins and dibenzofurans. Chemosphere, 2014, 114, 129-135.	4.2	17
131	Towards understanding the improved stability of palladium supported on TS-1 for catalytic combustion. Physical Chemistry Chemical Physics, 2016, 18, 10528-10537.	1.3	17
132	Conversion of NO into N ₂ over \hat{I}^3 -Mo ₂ N. Journal of Physical Chemistry C, 2016, 120, 22270-22280.	1.5	17
133	Predicting high temperature mechanical properties of CrN and CrAlN coatings from in-situ synchrotron radiation X-ray diffraction. Thin Solid Films, 2016, 599, 98-103.	0.8	17
134	Adsorption of 2â€Chlorophenol on the Surface of Silica―and Aluminaâ€Supported Iron Oxide: An FTIR and XPS Study. ChemCatChem, 2017, 9, 481-491.	1.8	17
135	Influence of DC magnetron sputtering reaction gas on structural and optical characteristics of Ce-oxide thin films. Ceramics International, 2018, 44, 16450-16458.	2.3	17
136	Formation of phenoxy-type Environmental Persistent Free Radicals (EPFRs) from dissociative adsorption of phenol on Cu/Fe and their partial oxides. Chemosphere, 2020, 240, 124921.	4.2	17
137	Microscopic and mesoscopic results from non-equilibrium molecular dynamics modeling of fene dumbbell liquids. Journal of Non-Newtonian Fluid Mechanics, 1993, 49, 23-62.	1.0	16
138	Experimental and Computational Studies on the Gas-Phase Reaction of CBrF3 with Hydrogen. Environmental Science & Environmental	4.6	16
139	Oxygen consumption by a bituminous coal: Time dependence of the rate of oxygen consumption. Combustion Science and Technology, 2002, 174, 165-185.	1.2	16
140	Zeolite catalysts for Halon conversion. Journal of Molecular Catalysis A, 2002, 181, 63-72.	4.8	16
141	Gas-phase reaction of CCl2F2 (CFC-12) with methane. Chemosphere, 2003, 53, 1189-1191.	4.2	16
142	Experimental and Kinetic Studies of Gas-phase Pyrolysis of <i>n</i> -C ₄ F ₁₀ . Industrial & amp; Engineering Chemistry Research, 2008, 47, 2579-2584.	1.8	16
143	Catalytic pyrolysis of CHF3 over activated carbon and activated carbon supported potassium catalyst. Journal of Fluorine Chemistry, 2010, 131, 698-703.	0.9	16
144	Influence of impurities on the epoxidation of allyl alcohol to glycidol with hydrogen peroxide over titanium silicate TS-1. Applied Catalysis A: General, 2015, 489, 241-246.	2.2	16

#	Article	IF	CITATIONS
145	Experimental and predicted mechanical properties of Cr _{1â'x} Al _x N thin films, at high temperatures, incorporating in situ synchrotron radiation X-ray diffraction and computational modelling. RSC Advances, 2017, 7, 22094-22104.	1.7	16
146	Atmospheric oxidation of carbon disulfide (CS2). Chemical Physics Letters, 2017, 669, 43-48.	1.2	16
147	Combustion chemistry of carbon disulphide (CS2). Combustion and Flame, 2019, 210, 413-425.	2.8	16
148	Products of incomplete combustion from biomass reburning. Fuel, 2020, 274, 117805.	3.4	16
149	Controlling NOx emission from boilers using waste polyethylene as reburning fuel. Chemical Engineering Journal, 2021, 411, 128427.	6.6	16
150	Experimental and Quantum Chemical Study of the Reaction CF2+ CH3â†" CF2CH3↠CH2CF2+ H: A Key Mechanism in the Reaction between Methane and Fluorocarbons. Industrial & Engineering Chemistry Research, 2006, 45, 3758-3762.	1.8	15
151	Nucleophilic reactivity of aniline derivatives towards the nitroso group. Journal of Physical Organic Chemistry, 2007, 20, 167-179.	0.9	15
152	Thermal Reduction of NO _{<i>x</i>} with Recycled Plastics. Environmental Science & Environment	4.6	15
153	Catalytic Hydrogenation of $\langle i \rangle p \langle i \rangle$ -Chloronitrobenzene to $\langle i \rangle p \langle i \rangle$ -Chloroaniline Mediated by \hat{I}^3 -Mo $\langle sub \rangle 2 \langle sub \rangle N$. ACS Omega, 2018, 3, 14380-14391.	1.6	15
154	Destruction of dioxin and furan pollutants via electrophilic attack of singlet oxygen. Ecotoxicology and Environmental Safety, 2019, 184, 109605.	2.9	15
155	Catalytic de-chlorination of products from PVC degradation by magnetite (Fe3O4). Applied Surface Science, 2019, 480, 792-801.	3.1	15
156	Photodecomposition properties of brominated flame retardants (BFRs). Ecotoxicology and Environmental Safety, 2020, 192, 110272.	2.9	15
157	Combustion chemistry of COS and occurrence of intersystem crossing. Fuel, 2021, 283, 119257.	3.4	15
158	Nucleophilic Catalysis of Nitrosation: Relationship between Nitrosating Agent Equilibrium Constant and Catalyst Nucleophilicity. Journal of Chemical Research, 2002, 2002, 589-590.	0.6	14
159	Water-in-oil emulsion foaming by thiourea nitrosation: Reaction and mass transfer. AICHE Journal, 2006, 52, 1558-1565.	1.8	14
160	2-Chlorophenol adsorption on Cu(100): First-principles density functional study. Surface Science, 2008, 602, 1554-1562.	0.8	14
161	Thermochemical Parameters and p <i>K</i> _a Values for Chlorinated Congeners of Thiophenol. Journal of Chemical & Data, 2012, 57, 1834-1842.	1.0	14
162	Structures, electronic properties and stability phase diagrams for copper(<scp>i</scp> / <scp>ii</scp>) bromide surfaces. Physical Chemistry Chemical Physics, 2015, 17, 9341-9351.	1.3	14

#	Article	IF	Citations
163	Role of Singlet Oxygen in Combustion Initiation of Aromatic Fuels. Energy &	2.5	14
164	Formation of polybrominated dibenzofurans (PBDFs) and polybrominated diphenyl ethers (PBDEs) from oxidation of brominated flame retardants (BFRs). Journal of Hazardous Materials, 2020, 400, 123166.	6.5	14
165	Compatibility of aqueous film-forming foams (AFFF) with sea water. Fire Safety Journal, 2021, 120, 103288.	1.4	14
166	Low-temperature oxidation of coal at elevated pressures. Journal of Loss Prevention in the Process Industries, 1998, 11, 373-381.	1.7	13
167	Catalytic hydrodehalogenation of halon 1211 (CBrClF2) over carbon-supported palladium catalysts. Applied Catalysis B: Environmental, 2003, 44, 253-261.	10.8	13
168	Gas-Phase and Pd-Catalyzed Hydrodehalogenation of CBrClF2, CCl2F2, CHClF2, and CH2F2. Industrial & Lamp; Engineering Chemistry Research, 2005, 44, 3442-3452.	1.8	13
169	The structures and thermodynamic stability of copper(<scp>ii</scp>) chloride surfaces. Physical Chemistry Chemical Physics, 2014, 16, 24209-24215.	1.3	13
170	Reactions of HO2 with n-propylbenzene and its phenylpropyl radicals. Combustion and Flame, 2015, 162, 1406-1416.	2.8	13
171	NEXAFS N K -edge study of the bonding structure on Al/Si doped sputtered CrN coatings. Journal of Alloys and Compounds, 2016, 661, 268-273.	2.8	13
172	Double-sided F and Cl adsorptions on graphene at various atomic ratios: Geometric, orientation and electronic structure aspects. Applied Surface Science, 2016, 373, 65-72.	3.1	13
173	DFTÂ+ U and ab initio atomistic thermodynamics approache for mixed transitional metallic oxides: A case study of CoCu 2 O 3 surface terminations. Materials Chemistry and Physics, 2017, 201, 241-250.	2.0	13
174	Flammability of CS2 and other reduced sulfur species. Fire Safety Journal, 2017, 91, 226-234.	1.4	13
175	Physico-chemical properties of CrMoN coatings - combined experimental and computational studies. Thin Solid Films, 2020, 693, 137671.	0.8	13
176	Burning properties of redox crystals of ammonium nitrate and saccharides. Combustion and Flame, 2020, 213, 132-139.	2.8	13
177	A kinetic model for halogenation of the zinc content in franklinite. Applied Surface Science, 2021, 562, 150105.	3.1	13
178	Effects of the structural properties of solid fuels on their re-ignition characteristics. Fire and Materials, 1998, 22, 155-165.	0.9	12
179	Non-oxidative reaction of CBrF3 with methane over NiZSM-5 and HZSM-5. Catalysis Today, 2000, 63, 355-362.	2.2	12
180	Conversion of halon 1211 (CBrClF2) over supported Pd catalysts. Catalysis Today, 2004, 97, 205-215.	2.2	12

#	Article	IF	CITATIONS
181	Quantum chemical study of copper (II) chloride and the Deacon reaction. Chemical Physics Letters, 2011, 501, 215-220.	1.2	12
182	A Mechanistic and Kinetic Study on the Decomposition of Morpholine. Journal of Physical Chemistry A, 2012, 116, 7703-7711.	1.1	12
183	Biologically enhanced degassing and precipitation of magnesium carbonates derived from bicarbonate solutions. Minerals Engineering, 2014, 61, 113-120.	1.8	12
184	Evidence of the Formation of Surface Palladium Carbide during the Catalytic Combustion of Lean Methane/Air Mixtures. Energy Technology, 2014, 2, 243-249.	1.8	12
185	Formation of chlorobenzenes by oxidative thermal decomposition of 1,3-dichloropropene. Combustion and Flame, 2015, 162, 2414-2421.	2.8	12
186	Structural and optical characteristics of pre- and post-annealed sol-gel derived CoCu-oxide coatings. Journal of Alloys and Compounds, 2017, 701, 222-235.	2.8	12
187	Formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) from oxidation of 4,4′-dichlorobiphenyl (4,4′-DCB). Proceedings of the Combustion Institute, 2019, 37, 1075-1082.	2.4	12
188	Catalytic reaction of methane with CBrF3. Chemical Communications, 1999, , 709-710.	2.2	11
189	Experimental and Computational Studies of the Gas-Phase Reaction of Halon 1211 with Hydrogen. Environmental Science & Environm	4.6	11
190	Influence of CF3I and CBrF3 on Methanol–Air and Methane–Air Premixed Flames. Fire Technology, 2008, 44, 221-237.	1.5	11
191	Effect of Methanol on the Gas-Phase Reaction of Trifluoromethane with Methane. Industrial & Samp; Engineering Chemistry Research, 2010, 49, 8406-8414.	1.8	11
192	Air Pollutants Formed in Thermal Decomposition of Folpet Fungicide under Oxidative Conditions. Environmental Science & Environ	4.6	11
193	Formation of environmentally-persistent free radicals (EPFR) on α-Al ₂ O ₃ clusters. RSC Advances, 2017, 7, 52672-52683.	1.7	11
194	Thermo-mechanical properties of cubic titanium nitride. Molecular Simulation, 2018, 44, 415-423.	0.9	11
195	Rheology of several hundred rigid bodies. Journal of Non-Newtonian Fluid Mechanics, 1994, 53, 25-64.	1.0	10
196	Catalytic hydrodehalogenation of halon 1211 (CBrClF2) over \hat{I}^3 -alumina-supported Ni, Pd and Pt catalysts. Catalysis Today, 2004, 88, 183-194.	2.2	10
197	Simultaneous conversion of CHCIF2 and CH3Br to CH2CF2. Chemosphere, 2007, 68, 2003-2006.	4.2	10
198	Experimental Study of Decomposition of Aqueous Nitrosyl Thiocyanate. Inorganic Chemistry, 2011, 50, 7440-7452.	1.9	10

#	Article	IF	CITATIONS
199	On wall fire interaction in a small pool fire: A large-eddy simulation study. Fire Safety Journal, 2017, 92, 199-209.	1.4	10
200	Structure, Stability, and (Non)Reactivity of the Low-Index Surfaces of Crystalline B ₂ O ₃ â€"I. Journal of Physical Chemistry C, 2017, 121, 11346-11354.	1.5	10
201	Thermo-mechanical properties of cubic lanthanide oxides. Thin Solid Films, 2018, 653, 37-48.	0.8	10
202	Singlet-diradical character in large PAHs triggers spontaneous-ignition of coal. Combustion and Flame, 2020, 212, 279-281.	2.8	10
203	Mineralisation of atmospheric CO2 in hydromagnesite in ultramafic mine tailings – Insights from Mg isotopes. Geochimica Et Cosmochimica Acta, 2021, 309, 191-208.	1.6	10
204	A DFT study on the self-coupling reactions of the three isomeric semiquinone radicals. Computational and Theoretical Chemistry, 2010, 958, 106-115.	1.5	9
205	Formation of toxic species and precursors of PCDD/F in thermal decomposition of alpha-cypermethrin. Chemosphere, 2011, 85, 143-150.	4.2	9
206	Roles of peroxides and unsaturation in spontaneous heating of linseed oil. Fire Safety Journal, 2013, 61, 108-115.	1.4	9
207	Towards a better understanding of the geometrical and orientational aspects of the electronic structure of halogens (F–I) adsorption on graphene. Applied Surface Science, 2015, 356, 370-377.	3.1	9
208	Structural, electronic and thermodynamic properties of bulk and surfaces of terbium dioxide (TbO ₂). Materials Research Express, 2018, 5, 085901.	0.8	9
209	Interaction of NH2 radical with alkylbenzenes. Combustion and Flame, 2019, 200, 85-96.	2.8	9
210	Interfacial and bulk properties of concentrated solutions of ammonium nitrate. Physical Chemistry Chemical Physics, 2020, 22, 27698-27712.	1.3	9
211	Thermal decomposition of ammonium nitrate on rust surface: Risk of low-temperature fire. Fire Safety Journal, 2021, 120, 103063.	1.4	9
212	Integrated Kinetic and Thermodynamic Model Describing the Nitrosation of Aniline and Its Derivatives under Reaction- and Encounter-Controlled Conditions. Industrial & Engineering Chemistry Research, 2004, 43, 2296-2301.	1.8	8
213	Adsorption of 2-chlorophenol on Cu2O(111)–CuCUS: A first-principles density functional study. Applied Surface Science, 2010, 256, 4764-4770.	3.1	8
214	Thermodynamic stability and structure of cuprous chloride surfaces: a DFT investigation. Physical Chemistry Chemical Physics, 2015, 17, 7038-7045.	1.3	8
215	Effect of methane on the conversion of HFC-134a in a dielectric barrier discharge non-equilibrium plasma reactor. Chemical Engineering Journal, 2016, 284, 412-421.	6.6	8
216	The mechanism of electrophilic addition of singlet oxygen to pyrrolic ring. Theoretical Chemistry Accounts, 2019, 138, 1.	0.5	8

#	Article	IF	CITATIONS
217	Co-oxidation of methane (CH4) and carbon disulfide (CS2). Proceedings of the Combustion Institute, 2019, 37, 677-685.	2.4	8
218	Co-pyrolysis of polyethylene with products from thermal decomposition of brominated flame retardants. Chemosphere, 2020, 254, 126766.	4.2	8
219	Low-temperature oxidation of monobromobenzene: Bromine transformation and yields of phenolic species. Chemosphere, 2021, 280, 130621.	4.2	8
220	Pyrolysis of Halon 1301 over zeolite catalysts. Microporous and Mesoporous Materials, 2000, 35-36, 219-226.	2.2	7
221	Conversion of a CFCs, HFCs and HCFCs waste mixture via reaction with methane. Journal of Hazardous Materials, 2010, 184, 696-703.	6.5	7
222	Toxic pollutants emitted from thermal decomposition of phthalimide compounds. Journal of Hazardous Materials, 2011, 187, 407-412.	6.5	7
223	Oxidation of dibenzo-p-dioxin: Formation of initial products, 2-methylbenzofuran and 3-hydro-2-methylenebenzofuran. Combustion and Flame, 2012, 159, 3056-3065.	2.8	7
224	HCl Adsorption on Copper-Modified ZSM-5: FTIR and DFT Study. Journal of Physical Chemistry C, 2013, , 130912084723007.	1.5	7
225	Formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F) by precursor pathways in oxidation of pesticide alpha-cypermethrin. Proceedings of the Combustion Institute, 2013, 34, 3499-3507.	2.4	7
226	Nonâ€Oxidative Conversion of 1,2â€Dichloroethane in a Nonâ€Thermal Plasma and Characterisation of the Polymer Formed. Plasma Processes and Polymers, 2013, 10, 141-149.	1.6	7
227	Nonequilibrium Plasma Polymerization of HFC-134a in a Dielectric Barrier Discharge Reactor: Polymer Characterization and a Proposed Mechanism for Polymer Formation. IEEE Transactions on Plasma Science, 2014, 42, 3095-3100.	0.6	7
228	Catalytic conversion of glycerol to polymers in the presence of ammonia. Chemical Engineering Journal, 2016, 291, 279-286.	6.6	7
229	Probing the Reactivity of Singlet Oxygen with Cyclic Monoterpenes. ACS Omega, 2019, 4, 14040-14048.	1.6	7
230	Thermal decomposition of model compound of algal biomass. International Journal of Chemical Kinetics, 2019, 51, 696-710.	1.0	7
231	Kinetics of Photo-Oxidation of Oxazole and its Substituents by Singlet Oxygen. Scientific Reports, 2020, 10, 3668.	1.6	7
232	Coal Oxidation at Low Temperatures: Oxygen Consumption, Oxidation Products, Reaction Mechanism and Kinetic Modeling. ChemInform, 2004, 35, no.	0.1	6
233	Pressure-Loss Correlations for Designing Foam Proportioning Systems. Fire Technology, 2007, 43, 123-144.	1.5	6
234	Comparative Study on the Formation of Toxic Species from 4-chlorobiphenyl in Fires: Effect of Catalytic Surfaces. Procedia Engineering, 2013, 62, 350-358.	1.2	6

#	Article	IF	CITATIONS
235	Accelerated hydrothermal ageing of Pd/Al ₂ O ₃ for catalytic combustion of ventilation air methane. Catalysis Science and Technology, 2015, 5, 4008-4016.	2.1	6
236	Geometrical and orientational investigations on the electronic structure of graphene with adsorbed aluminium or silicon. Materials and Design, 2016, 89, 27-35.	3.3	6
237	Introducing Quantum Chemistry in Chemical Engineering Curriculum. Journal of Chemical Education, 2018, 95, 1562-1571.	1.1	6
238	Treatment of pitch in argon/hydrogen plasmas. Industrial & Engineering Chemistry Research, 1992, 31, 818-827.	1.8	5
239	Ab Initio Study of Bonding between Nucleophilic Species and the Nitroso Group. Journal of Physical Chemistry A, 2007, 111, 1300-1306.	1.1	5
240	Synthesis of Vinylidene Fluoride via Reaction of Chlorodifluoromethane (HCFC-22) with Methane. Industrial & Damp; Engineering Chemistry Research, 2010, 49, 6010-6019.	1.8	5
241	Comparative Study of the Physicochemical Properties of Ortho-Substituted Aromatic Nitroso Compounds. Journal of Chemical & Engineering Data, 2013, 58, 1005-1010.	1.0	5
242	Water formation via HCl oxidation on Cu(100). Applied Surface Science, 2014, 299, 156-161.	3.1	5
243	The effect of synthesis gas composition on the performance of Ni-based solid oxide fuel cells. Chemical Engineering Research and Design, 2015, 101, 22-26.	2.7	5
244	Formation of mixed halogenated dibenzo-p-dioxins and dibenzofurans (PXDD/Fs). Chemosphere, 2015, 137, 149-156.	4.2	5
245	Catalytic de-halogenation of alkyl halides by copper surfaces. Journal of Environmental Chemical Engineering, 2018, 6, 7214-7224.	3.3	5
246	Catalytic Process for the Conversion of Halon 1211 (CBrClF2) to Halon 1301 (CBrF3) and CFC 13 (CClF3). Industrial & Damp; Engineering Chemistry Research, 2003, 42, 6000-6006.	1.8	4
247	Theoretical Study on the Thermodynamic Properties and Self-Decomposition of Methylbenzenediol Isomers. Journal of Physical Chemistry A, 2010, 114, 11751-11760.	1.1	4
248	Characterization of Polymer Synthesized from the Nonequilibrium Plasma Conversion of CFC-12 and Methane in a Dielectric Barrier Discharge Reactor. Industrial & Digineering Chemistry Research, 2014, 53, 19380-19386.	1.8	4
249	Experimental investigation of the reaction of HCFC-22 and methane in a dielectric barrier discharge non-equilibrium plasma. Chemical Engineering Journal, 2016, 301, 73-82.	6.6	4
250	Reaction of dichloromethane under non-oxidative conditions in a dielectric barrier discharge reactor and characterisation of the resultant polymer. Chemical Engineering Journal, 2016, 290, 499-506.	6.6	4
251	Reaction of nitrous oxide with methane to synthesis gas: A thermodynamic and catalytic study. Journal of Energy Chemistry, 2017, 26, 155-162.	7.1	4
252	Understanding the adsorptive interactions of arsenate–iron nanoparticles with curved fullerene-like sheets in activated carbon using a quantum mechanics/molecular mechanics computational approach. Physical Chemistry Chemical Physics, 2017, 19, 14262-14268.	1.3	4

#	Article	IF	Citations
253	Electronic properties and stability phase diagrams for cubic BN surfaces. Molecular Simulation, 2017, 43, 267-275.	0.9	4
254	Enhanced ignition of biomass in presence of NOx. Fire Safety Journal, 2017, 91, 235-242.	1.4	4
255	Oxidation of 4-bromo-4'-chlorobiphenyl, model species for forming mixed halogenated aromatic compounds. International Journal of Environment and Pollution, 2017, 61, 243.	0.2	4
256	A proposed reaction mechanism for the selective oxidation of methane with nitrous oxide over Co-ZSM-5 catalyst forming synthesis gas (COÂ+ÂH2). International Journal of Hydrogen Energy, 2018, 43, 13133-13144.	3.8	4
257	Extended kinetic theory of polymeric fluids. Macromolecular Theory and Simulations, 1996, 5, 1121-1142.	0.6	3
258	A PROCESS FOR DISPOSAL OF HALON 1301 (CBrF3). Chemical Engineering Communications, 1999, 176, 195-200.	1.5	3
259	Gas-Phase Reaction of Halon 1301 (CBrF3) with Propane. Industrial & Engineering Chemistry Research, 2002, 41, 2858-2863.	1.8	3
260	Mechanistic Study of Trapping of NO by 3,5-Dibromo-4-Nitrosobenzene Sulfonate. Industrial & Engineering Chemistry Research, 2012, 51, 14325-14336.	1.8	3
261	Reaction of carbon tetrachloride with methane in a non-equilibrium plasma at atmospheric pressure, and characterisation of the polymer thus formed. Journal of Hazardous Materials, 2014, 280, 38-45.	6.5	3
262	Interaction of Oxygen with α-Rhombohedral Boron (001) Surface. Journal of Physical Chemistry C, 2016, 120, 5968-5979.	1.5	3
263	Cobalt Species Active for Nitrous Oxide (N2O) Decomposition within a Temperature Range of 300–600°C. Australian Journal of Chemistry, 2017, 70, 1138.	0.5	3
264	Study on the Reaction of CCl ₂ F ₂ with CH ₄ in a Dielectric Barrier Discharge Nonequilibrium Plasma. Plasma Processes and Polymers, 2013, 10, n/a-n/a.	1.6	2
265	Trapping of Nitric Oxide, Generated during Sensitization of Ammonium Nitrate Emulsion Explosive, by Aromatic Nitroso Sulfonates. Industrial & Engineering Chemistry Research, 2013, 52, 10561-10568.	1.8	2
266	Experimental Study on the Reaction of CCl3F and CH4in a Dielectric Barrier Discharge Nonequilibrium Plasma Reactor. Industrial & Engineering Chemistry Research, 2016, 55, 463-471.	1.8	2
267	Thermodynamic Parameters Including Acid Dissociation Constants for Bromochlorophenols (BCPs). Journal of Chemical & Description (BCPs) and Description (BCPs).	1.0	2
268	Kinetics of antigorite dehydroxylation for CO2 sequestration. Minerals Engineering, 2022, 184, 107630.	1.8	2
269	Direct modeling of flow of FENE fluids. Rheologica Acta, 1995, 34, 384-396.	1.1	1
270	The role of extinction on the re-ignition potential of wood-based embers in bushfires. International Journal of Wildland Fire, 2007, 16, 547.	1.0	1

#	Article	IF	Citations
271	Three-Dimensional Numerical Study on Flames. Chemical Product and Process Modeling, 2009, 4, .	0.5	1
272	Non-thermal plasma polymerization of HFC-134a in a dielectric barrier discharge reactor; Polymer characterization and understanding the mechanism of polymer formation. , 2013, , .		1
273	<i>S</i> -Nitrosation of Aminothiones. Journal of Organic Chemistry, 2015, 80, 6951-6958.	1.7	1
274	Process for Chloroform Decomposition: Nonthermal Plasma Polymerization with Methane and Hydrogen. Industrial & Engineering Chemistry Research, 2018, 57, 9075-9082.	1.8	1
275	Short Communication: application of a surrogate material in assessing the impact of porosity on re-ignition of wood-based materials. Fire and Materials, 2002, 26, 99-101.	0.9	0
276	Inhibition of Premixed Methane-Air Flames with CF3I. Chemical Product and Process Modeling, 2009, 4, .	0.5	0
277	Introduction to this Special Issue. Fire Technology, 2012, 48, 547-547.	1.5	0
278	Reaction of chloroform in a non-oxidative atmosphere using dielectric barrier discharge. , 2013, , .		0
279	Non-thermal plasma polymerization of HFC-134A in a dielectric barrier discharge reactor; Polymer characterization and a proposed mechanism for polymer formation. , 2013 , , .		O
280	Reaction of CCl <inf>3</inf> F (CFC-11) with CH <inf>4</inf> in a dielectric barrier discharge reactor. , 2015, , .		0
281	Flammability of sulfur powder - An extremely hazardous chemical. Fire Safety Journal, 2021, 120, 103088.	1.4	0
282	Importance of Intersystem Crossing on Flammability Properties of Carbon Disulphide (CS2). , 2020, , 77-88.		0
283	Probing the chemical reactivity of the B2O3 -I (1 0 1) Surface: Interaction with H2O and H2S. Applied Surface Science, 2022, 599, 153999.	3.1	O