List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1872976/publications.pdf Version: 2024-02-01

Ιιλ-Ητιλ Γινι

#	Article	IF	CITATIONS
1	2SAFE: a health belief model-integrated framework for participatory ergonomics. Theoretical Issues in Ergonomics Science, 2023, 24, 281-298.	1.0	0
2	Methods for measuring physical workload among commercial cleaners: A scoping review. International Journal of Industrial Ergonomics, 2022, 90, 103319.	1.5	9
3	Cleaning in the 21st Century: The musculoskeletal disorders associated with the centuries-old occupation – A literature review. Applied Ergonomics, 2022, 105, 103839.	1.7	7
4	Factors Affecting Material-Cart Handling in the Roofing Industry: Evidence for Administrative Controls. International Journal of Environmental Research and Public Health, 2021, 18, 1510.	1.2	5
5	Activation patterns of shoulder internal and external rotators during pure axial moment generation across a postural range. Journal of Biomechanics, 2021, 123, 110503.	0.9	2
6	Simple benchmarking method for determining the accuracy of depth cameras in body landmark location estimation: Static upright posture as a measurement example. PLoS ONE, 2021, 16, e0254814.	1.1	1
7	Are Work-Related Musculoskeletal Disorders Claims Related to Risk Factors in Workplaces of the Manufacturing Industry?. Annals of Work Exposures and Health, 2020, 64, 152-164.	0.6	22
8	Inter-rater reliability of an inertial measurement unit sensor-based posture-matching method: A pilot study. International Journal of Industrial Ergonomics, 2020, 80, 103025.	1.5	6
9	Predicting Sagittal Plane Lifting Postures From Image Bounding Box Dimensions. Human Factors, 2019, 61, 64-77.	2.1	12
10	Prediction of Maximum Static Grip Strength in a Standing Posture and with Preferred Grip Span in a Chinese Sample. IISE Transactions on Occupational Ergonomics and Human Factors, 2019, 7, 71-80.	0.5	3
11	Examining Relationship between Driver Characteristics and Critical Target Identification Failures. Transportation Research Record, 2019, 2673, 192-197.	1.0	1
12	The effect of sit-stand schedules on office work productivity: A pilot study. Work, 2019, 64, 563-568.	0.6	4
13	Occupational cranking operations: The scapula perspective. Applied Ergonomics, 2019, 75, 129-133.	1.7	0
14	An investigation intoÂfour different sit–stand workstation use schedules. Ergonomics, 2018, 61, 243-254.	1.1	24
15	Impact of posture choice on one-handed pull strength variations at low, waist, and overhead pulling heights. International Journal of Industrial Ergonomics, 2018, 64, 226-234.	1.5	12
16	New technologies in human factors and ergonomics research and practice. Applied Ergonomics, 2018, 66, 179-181.	1.7	12
17	An entropy-assisted musculoskeletal shoulder model. Journal of Electromyography and Kinesiology, 2017, 33, 103-110.	0.7	2
18	Using the Microsoft Kinectâ,,¢ to assess 3-D shoulder kinematics during computer use. Applied Ergonomics, 2017, 65, 418-423.	1.7	44

#	Article	IF	CITATIONS
19	Alternative Workstations: Magic Pills for Office Worker Health?. Proceedings of the Human Factors and Ergonomics Society, 2017, 61, 460-464.	0.2	1
20	Ergonomic evaluation of standard and alternative pallet jack handless. International Journal of Industrial Ergonomics, 2016, 54, 113-119.	1.5	10
21	Evaluation of regression-based 3-D shoulder rhythms. Journal of Electromyography and Kinesiology, 2016, 29, 28-33.	0.7	5
22	Normative data on the one-handed static pull strength of a Chinese population and a comparison with American data. Ergonomics, 2016, 59, 526-533.	1.1	9
23	Effects of Working Environment Factors and Operator Experience on Upper Extremity Mechanical Properties During Powered Hand Tool Use. IIE Transactions on Occupational Ergonomics and Human Factors, 2015, 3, 81-90.	0.5	5
24	Accuracy of the Microsoft Kinectâ,,¢ for measuring gait parameters during treadmill walking. Gait and Posture, 2015, 42, 145-151.	0.6	179
25	The accuracy of the Oculus Rift virtual reality head-mounted display during cervical spine mobility measurement. Journal of Biomechanics, 2015, 48, 721-724.	0.9	56
26	Evaluation of older driver head functional range of motion using portable immersive virtual reality. Experimental Gerontology, 2015, 70, 150-156.	1.2	22
27	Effect of grip type, wrist motion, and resistance level on pressures within the carpal tunnel of normal wrists. Journal of Orthopaedic Research, 2014, 32, 524-530.	1.2	22
28	The effect of age on the hand movement time during machine paced assembly tasks for female workers. International Journal of Industrial Ergonomics, 2014, 44, 148-152.	1.5	12
29	Shoulder muscle fatigue development in young and older female adults during a repetitive manual task. Ergonomics, 2014, 57, 1201-1212.	1.1	29
30	A regression model predicting isometric shoulder muscle activities from arm postures and shoulder joint moments. Journal of Electromyography and Kinesiology, 2014, 24, 419-429.	0.7	24
31	A regression-based 3-D shoulder rhythm. Journal of Biomechanics, 2014, 47, 1206-1210.	0.9	12
32	The accuracy of an external frame using ISB recommended rotation sequence to define shoulder joint angle. Gait and Posture, 2014, 39, 662-668.	0.6	5
33	Upper extremity kinematic and kinetic adaptations during a fatiguing repetitive task. Journal of Electromyography and Kinesiology, 2014, 24, 404-411.	0.7	49
34	Aging, Obesity and Beyond. Proceedings of the Human Factors and Ergonomics Society, 2014, 58, 1648-1652.	0.2	0
35	Effect of aging on inter-joint synergies during machine-paced assembly tasks. Experimental Brain Research, 2013, 231, 249-256.	0.7	9
36	Shoulder Joint Loading and Posture During Medicine Cart Pushing Task. Journal of Occupational and Environmental Hygiene, 2013, 10, 446-454.	0.4	5

#	Article	IF	CITATIONS
37	One-handed standing pull strength in different postures: Normative data. Applied Ergonomics, 2013, 44, 603-608.	1.7	25
38	Description and analysis of hand forces in medicine cart pushing tasks. Applied Ergonomics, 2013, 44, 48-57.	1.7	20
39	Effect of Handle Design on Pallet Jack Operations. Ergonomics in Design, 2013, 21, 15-21.	0.4	4
40	The natural angle between the hand and handle and the effect of handle orientation on wrist radial/ulnar deviation during maximal push exertions. Ergonomics, 2013, 56, 682-691.	1.1	9
41	The effects of joint torque, pace and work:rest ratio on powered hand tool operations. Ergonomics, 2012, 55, 361-370.	1.1	5
42	Coordinate transformation between shoulder kinematic descriptions in the Holzbaur et al. model and ISB sequence. Journal of Biomechanics, 2012, 45, 2715-2718.	0.9	7
43	Transformation between different local coordinate systems of the scapula. Journal of Biomechanics, 2012, 45, 2724-2727.	0.9	5
44	Flexion Relaxation and Its Relation to Pain and Function over the Duration of a Back Pain Episode. PLoS ONE, 2012, 7, e39207.	1.1	29
45	Effects of handle orientation and between-handle distance on bi-manual isometric push strength. Applied Ergonomics, 2012, 43, 664-670.	1.7	23
46	Correlations between pain and function in a longitudinal low back pain cohort. Disability and Rehabilitation, 2011, 33, 945-952.	0.9	13
47	NIRS application in evaluating threaded-fastener driving assembly tasks. International Journal of Industrial Ergonomics, 2010, 40, 146-152.	1.5	15
48	Prediction accuracy in estimating joint angle trajectories using a video posture coding method for sagittal lifting tasks. Ergonomics, 2010, 53, 1039-1047.	1.1	23
49	Exposures and Physiological Responses in Power Tool Operations: Fastening vs. Unfastening Threaded Hardware. Journal of Occupational and Environmental Hygiene, 2010, 7, 290-297.	0.4	6
50	Accuracy of the Borg CR10 Scale for Estimating Grip Forces Associated with Hand Tool Tasks. Journal of Occupational and Environmental Hygiene, 2010, 7, 298-306.	0.4	20
51	Hand Tool Ergonomics – past and Present. Proceedings of the Human Factors and Ergonomics Society, 2010, 54, 1145-1148.	0.2	Ο
52	Predicting subjective perceptions of powered tool torque reactions. Applied Ergonomics, 2009, 40, 47-55.	1.7	23
53	Oxygenation kinetics of forearm muscles as a function of handle diameter during a repetitive power grip force task. International Journal of Industrial Ergonomics, 2009, 39, 465-470.	1.5	9
54	Effects of user experience, working posture and joint hardness on powered nutrunner torque reactions. Ergonomics, 2007, 50, 859-876.	1.1	27

#	Article	IF	CITATIONS
55	Hand-Handle Interface Force and Torque Measurement System for Pneumatic Assembly Tool Operations: Suggested Enhancement to ISO 6544. Journal of Occupational and Environmental Hygiene, 2007, 4, 332-340.	0.4	11
56	Power grip strength as a function of tool handle orientation and location. Ergonomics, 2007, 50, 1392-1403.	1.1	19
57	Handle displacement and operator responses to pneumatic nutrunner torque buildup. Applied Ergonomics, 2006, 37, 367-376.	1.7	21
58	Subjective Perceptions toward Selected Power Nutrunner Torque Reactions. Proceedings of the Human Factors and Ergonomics Society, 2006, 50, 1887-1891.	0.2	0
59	Effect of User Experience on Powered Nutrunner Torque Reactions. Proceedings of the Human Factors and Ergonomics Society, 2005, 49, 1410-1414.	0.2	0
60	Ergonomics Applications of a Mechanical Model of the Human Operator in Power Hand Tool Operation. Journal of Occupational and Environmental Hygiene, 2005, 2, 111-119.	0.4	11
61	Effects of User Experience, Working Posture, and Joint Hardness on Powered Nutrunner Torque Reactions. Proceedings of the Human Factors and Ergonomics Society, 2004, 48, 1275-1279.	0.2	0
62	A single-degree-of-freedom dynamic model predicts the range of human responses to impulsive forces produced by power hand tools. Journal of Biomechanics, 2003, 36, 1845-1852.	0.9	46
63	Perspectives in Powered Nutrunner Torque Reaction: Handle Displacement and Grip Force. Proceedings of the Human Factors and Ergonomics Society, 2003, 47, 1269-1273.	0.2	4
64	Handle Dynamics Predictions for Selected Power Hand Tool Applications. Human Factors, 2003, 45, 645-656.	2.1	28
65	Forces associated with pneumatic power screwdriver operation: statics and dynamics. Ergonomics, 2003, 46, 1161-1177.	1.1	39
66	Dynamic biomechanical model of the hand and arm in pistol grip power handtool usage. Ergonomics, 2001, 44, 295-312.	1.1	51
67	Development and Validation of a Dynamic Biomechanical Model for Power Hand Tool Torque Build-up Reaction Force. Proceedings of the Human Factors and Ergonomics Society, 2000, 44, 29-32.	0.2	0
68	A Dynamic Biomechanical Model of the Hand and Arm in Pistol Grip Power Hand Tool Use. Proceedings of the Human Factors and Ergonomics Society, 1999, 43, 693-697.	0.2	2