

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1872680/publications.pdf Version: 2024-02-01

VONC HE

#	Article	IF	CITATIONS
1	Visible light boosting hydrophobic ZnO/(Sr0.6Bi0.305)2Bi2O7 chemiresistor toward ambient trimethylamine. Sensors and Actuators B: Chemical, 2022, 352, 131076.	7.8	8
2	2D SnSe2 nanoflakes decorated with 1D ZnO nanowires for ppb-level NO2 detection at room temperature. Journal of Hazardous Materials, 2022, 426, 128061.	12.4	21
3	Humidity-activated H2S sensor based on SnSe2/WO3 composite for evaluating the spoilage of eggs at room temperature. Sensors and Actuators B: Chemical, 2022, 357, 131424.	7.8	39
4	Evaluation of the Humidification Effect of Street Trees Based on All-Inorganic Lead-Free K ₂ CuBr ₃ Humidity Sensors. ACS Applied Electronic Materials, 2022, 4, 1592-1602.	4.3	1
5	Temperature modulated p-n transition NO2 sensor in metal-organic framework-derived CuO. Sensors and Actuators B: Chemical, 2022, 359, 131605.	7.8	17
6	A lead-free K2CuBr3 microwires-based humidity sensor realized via QCM for real-time breath monitoring. Sensors and Actuators B: Chemical, 2022, 367, 132112.	7.8	16
7	Ultrasensitive and reversible room-temperature resistive humidity sensor based on layered two-dimensional titanium carbide. Ceramics International, 2021, 47, 6463-6469.	4.8	27
8	Lead-Free CsCu ₂ 1 ₃ Perovskite Nanostructured Networks Gas Sensor for Selective Detection of Trace Nitrogen Dioxide at Room Temperature. IEEE Sensors Journal, 2021, 21, 14677-14684.	4.7	13
9	Surface Ligand Engineering for a Lead-Free Cs ₃ Cu ₂ Br ₅ Microcrystal-Based Humidity Sensor with a Giant Response. Journal of Physical Chemistry Letters, 2021, 12, 3401-3409.	4.6	34
10	In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for Highâ€Performance Bifunctional Sensing Applications. Small Methods, 2021, 5, e2100202.	8.6	12
11	Synthesis Strategy of Metal Oxide Quantum Wires via a Nanoparticle-Induced Graphene Oxide Rolling Procedure. Inorganic Chemistry, 2021, 60, 11070-11080.	4.0	4
12	Development of a rGO-BiVO ₄ Heterojunction Humidity Sensor with Boosted Performance. ACS Applied Materials & Interfaces, 2021, 13, 27188-27199.	8.0	40
13	An excellent impedance-type humidity sensor based on halide perovskite CsPbBr3 nanoparticles for human respiration monitoring. Sensors and Actuators B: Chemical, 2021, 337, 129772.	7.8	76
14	Enhanced room temperature ammonia response of 2D-Ti3C2T MXene decorated with Ni(OH)2 nanoparticles. Ceramics International, 2021, 47, 19471-19480.	4.8	25
15	Hollow Cu2O nanospheres loaded with MoS2/reduced graphene oxide nanosheets for ppb-level NO2 detection at room temperature. Journal of Hazardous Materials, 2021, 416, 126218.	12.4	83
16	Facile hydrothermal synthesis of Ti3C2Tx-TiO2 nanocomposites for gaseous volatile organic compounds detection at room temperature. Journal of Hazardous Materials, 2021, 416, 126171.	12.4	67
17	Enhanced ammonia sensing performance based on MXene-Ti3C2Tx multilayer nanoflakes functionalized by tungsten trioxide nanoparticles. Journal of Colloid and Interface Science, 2021, 595, 6-14.	9.4	94
18	Improving anti-humidity property of In2O3 based NO2 sensor by fluorocarbon plasma treatment. Sensors and Actuators B: Chemical, 2021, 344, 130268.	7.8	25

Yong He

#	Article	IF	CITATIONS
19	Low-operating temperature ammonia sensor based on Cu ₂ O nanoparticles decorated with p-type MoS ₂ nanosheets. Journal of Materials Chemistry C, 2021, 9, 4838-4846.	5.5	72
20	Humidity Sensing by Graphitic Carbon Nitride Nanosheet/TiO ₂ Nanoparticle/Ti ₃ C ₂ T _x Nanosheet Composites for Monitoring Respiration and Evaluating the Waxing of Fruits. ACS Applied Nano Materials, 2021, 4, 11159-11167.	5.0	19
21	Facile Synthesis of Zinc Titanate Nanotubes via Reaction-byproduct Etching. Chemistry Letters, 2020, 49, 1220-1223.	1.3	0
22	Face-selective tungstate ions drive zinc oxide nanowire growth direction and dopant incorporation. Communications Materials, 2020, 1, .	6.9	12
23	An ultra-sensitive detection system for sulfur dioxide and nitric oxide based on improved differential optical absorption spectroscopy method. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 233, 118169.	3.9	15
24	Substantial Narrowing on the Width of "Concentration Window―of Hydrothermal ZnO Nanowires via Ammonia Addition. Scientific Reports, 2019, 9, 14160.	3.3	33
25	Paper-Based Disposable Molecular Sensor Constructed from Oxide Nanowires, Cellulose Nanofibers, and Pencil-Drawn Electrodes. ACS Applied Materials & Interfaces, 2019, 11, 15044-15050.	8.0	54
26	Long-Term Stability of Oxide Nanowire Sensors via Heavily Doped Oxide Contact. ACS Sensors, 2017, 2, 1854-1859.	7.8	24
27	Unveiling massive numbers of cancer-related urinary-microRNA candidates via nanowires. Science Advances, 2017, 3, e1701133.	10.3	170
28	True Vapor–Liquid–Solid Process Suppresses Unintentional Carrier Doping of Single Crystalline Metal Oxide Nanowires. Nano Letters, 2017, 17, 4698-4705.	9.1	20
29	Nanoscale Thermal Management of Single SnO ₂ Nanowire: pico-Joule Energy Consumed Molecule Sensor. ACS Sensors, 2016, 1, 997-1002.	7.8	56
30	Rational Concept for Reducing Growth Temperature in Vapor–Liquid–Solid Process of Metal Oxide Nanowires. Nano Letters, 2016, 16, 7495-7502.	9.1	33
31	All-nanocellulose nonvolatile resistive memory. NPG Asia Materials, 2016, 8, e310-e310.	7.9	64
32	Tailoring Nucleation at Two Interfaces Enables Single Crystalline NiO Nanowires via Vapor–Liquid–Solid Route. ACS Applied Materials & Interfaces, 2016, 8, 27892-27899.	8.0	6
33	Self-assembled Nanowire Arrays as Three-dimensional Nanopores for Filtration of DNA Molecules. Analytical Sciences, 2015, 31, 153-157.	1.6	13
34	Three-dimensional Nanowire Structures for Ultra-Fast Separation of DNA, Protein and RNA Molecules. Scientific Reports, 2015, 5, 10584.	3.3	39
35	Rational Concept for Designing Vapor–Liquid–Solid Growth of Single Crystalline Metal Oxide Nanowires. Nano Letters, 2015, 15, 6406-6412.	9.1	46
36	A flux induced crystal phase transition in the vapor–liquid–solid growth of indium-tin oxide nanowires. Nanoscale, 2014, 6, 7033.	5.6	20

Yong He

#	Article	IF	CITATIONS
37	Modulation of Thermoelectric Power Factor via Radial Dopant Inhomogeneity in B-Doped Si Nanowires. Journal of the American Chemical Society, 2014, 136, 14100-14106.	13.7	16
38	Nanoscale Size-Selective Deposition of Nanowires by Micrometer Scale Hydrophilic Patterns. Scientific Reports, 2014, 4, 5943.	3.3	9
39	Ultrafast and Wide Range Analysis of DNA Molecules Using Rigid Network Structure of Solid Nanowires. Scientific Reports, 2014, 4, 5252.	3.3	54
40	Cellulose Nanofiber Paper as an Ultra Flexible Nonvolatile Memory. Scientific Reports, 2014, 4, 5532.	3.3	122
41	Crystal-Plane Dependence of Critical Concentration for Nucleation on Hydrothermal ZnO Nanowires. Journal of Physical Chemistry C, 2013, 117, 1197-1203.	3.1	67
42	Impact of Preferential Indium Nucleation on Electrical Conductivity of Vapor–Liquid–Solid Grown Indium–Tin Oxide Nanowires. Journal of the American Chemical Society, 2013, 135, 7033-7038.	13.7	44
43	Pressure-induced evaporation dynamics of gold nanoparticles on oxide substrate. Physical Review E, 2013, 87, 012405.	2.1	18
44	Carrier type dependence on spatial asymmetry of unipolar resistive switching of metal oxides. Applied Physics Letters, 2013, 103, .	3.3	24
45	Switching Properties of Titanium Dioxide Nanowire Memristor. Japanese Journal of Applied Physics, 2012, 51, 11PE09.	1.5	10
46	Facile and scalable patterning of sublithographic scale uniform nanowires by ultra-thin AAO free-standing membrane. RSC Advances, 2012, 2, 10618.	3.6	22
47	Fundamental Strategy for Creating VLS Grown TiO ₂ Single Crystalline Nanowires. Journal of Physical Chemistry C, 2012, 116, 24367-24372.	3.1	28
48	Prominent Thermodynamical Interaction with Surroundings on Nanoscale Memristive Switching of Metal Oxides. Nano Letters, 2012, 12, 5684-5690.	9.1	40
49	Effect of defect content on the unipolar resistive switching characteristics of ZnO thin film memory devices. Solid State Communications, 2012, 152, 1630-1634.	1.9	21
50	Realization of Rectifying and Resistive Switching Behaviors of TiO2 Nanorod Arrays for Nonvolatile Memory. Electrochemical and Solid-State Letters, 2011, 14, H422.	2.2	28
51	Microstructure and Electrical Properties of PMN-PT Thin Films Prepared by Oxygen Plasma Assisted Pulsed Laser Deposition. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2011, 26, 1227-1232.	1.3	1